Measurement of Association and Impact

Attributable Risk
Attributable Risk in Exposed
Population Attributable risk

Attributable Risk (AR)

- Measures of association based on the absolute difference between two risk estimates
- Used to imply causal-effect relationship

Caution:

- interpreted as a true etiologic fraction
- causal relationship between exposure and outcome

Attributable Risk in Exposed (ARexp)

- Measures the excess risk for a given Exp level associated with the Exp
- Different Exp levels - Referent Exp levels q_{+}incidence in exposed q . incidence in unexposed

$$
A R_{\text {exp }}=q_{+}-q
$$

Caution:

- most Exp effects are cumulative
- cessation of Exp usualy does not reduce the risk in Exp = risk in non-Exp
- prevention rather than cessation

Percent Attributable Risk (\%AR exp)

- Percentage of the total risk in the exposed attributable to the exposure
$-\% A R_{\exp }=\frac{\left\{q_{+}-q_{-}\right\}}{q_{+}} \times 100$
- Concept of percent efficacy in assessing vaccine

Population Attributable Risk (Pop AR)

- Measures the proportion of the disease risk in the total population associated with Exp
- When
q_{+}incidence in exposed
q. incidence in unexposed
p_{e} exposure prevalence in the population
1- p_{e} non-exposure prevalence
Risk in the total population ($q_{\text {pop }}$)
= weight sum of risks in the Exp and NonExp
$=\left[q_{+} \times p_{e}\right]+\left[q . x\left(1-p_{e}\right)\right]$

$$
\text { Pop AR }=q_{p o p}-q^{-}
$$

- Exposure cessation would decrease qpop to the risk of NonExp
(if it is causal relationship and Exp can be completely reversible)
- Pop AR expressed in percentage

$$
\% \text { Pop AR is }=\left[\left(q_{p o p}-q_{-}\right) / q_{p o p}\right] \times 100
$$

Example of Integrating all Measurements

You are in charge of health prevention - Want to reduce automobile-related deaths

- Have a limited budget
- Conduct a cohort study to examine causes

Relative Risk of

Automobile-related Death

Driving too fast 5.0 times
more likely to die than those who drove not too fast

Driving while drunk 10.7 times more likely to die than those who drove without drunk

Cohort Study

Risk Difference

For a cohort study:

Risk difference $=$ Risk $_{\text {exposed }}$ - Risk unexposed

Automobile Deaths, Country A

Fast	Dead	Not dead		Risk	Risk Difference
	100	1900	2000	0.050	
					$0.050-0.010=0.040$
Slow	80	7920	8000	0.010	
	180	9820	10000		
	Dead	Not dead			
Drunk	45	255	300	0.150	$0.150-0.014=0.136$
Not Drunk	135	9565	9700	0.014	
		9820	10000		
	180				

Attributable Risk Percent

Also called "attributable fraction among the exposed" and "etiologic fraction" (if causal relationship)

Proportion of cases in the exposed group presumably attributed to the exposure

What proportion of drunk drivers had an automobile related death because they were drunk?

ARP = (Riskexposed - Riskunexposed $) /$ Riskexposed $=(R R-1) / R R$

Only appropriate if RR>1.0

\%AR

| $\begin{array}{l}\text { Automobile Drivers } \\ \text { Dead }\end{array}$ | | | | | Not dead | Risk |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Riskexposed-Riskunexposed

Riskexposed\end{array}\right]\)

Conclude

Percentage of a disease that may be eliminated among those with the risk factor if the effects of the risk factor can be completely removed.

Among fast drivers who had an automobile-related death, 80\% presumably died because they were driving too fast

Among drunk drivers who had an automobile-related death, 91\% presumably died because they were drunk

Case-Control Study

Attributable Risk Percent

For case-control study, can't calculate risk!
If the odds ratio is an approximation of the relative risk (rare disease assumption),
then

$$
\% A R=(O R-1.0) / O R
$$

Prevented Fraction in the Exposed Group (Vaccine Efficacy)

Risk ratio is ≤ 1.0
Proportion of potential new cases which would have occurred if the exposure had been absent

or

Proportion of potential cases prevented by the exposure

PF=(Risk $_{\text {unexposed }}-$ Risk $\left._{\text {exposed }}\right) /$ Risk $_{\text {unexposed }}$
= 1 - RR

Measles and Vaccination Status

Texarcana, USA, 1970

Measles No measles

Vaccine	Measles No measles			Risk/1000$4.2$	Relative Risk0.04
	27	6323	6350		
No vaccine	512	4323	4835	105.9	
	539	10646	11185		

Vaccine efficacy $=($ Riskunexposed-Riskexposed) $/$ Riskunexposed $=1-$ RR

$$
=(105.9-4.2) / 105.9=0.96=1-0.04
$$

Conclude: 96% of the cases that would have occurred among the vaccinated group had they not been vaccinated were prevented by vaccination

Population Attributable Risk

Also called population attributable Fraction (assumption of etiology)

Proportion of cases in entire population presumably attribtuable to the exposure

What proportion of automobile-related deaths were due to drunk driving?

Calculation of PopAR

(Riskoverall - Riskunexposed)/Riskoverall
(Pc)(Riskexposed - Riskunexposed)/Riskexposed
(Pc)(Attributable Risk Percent)
(Pc)(RR-1)/RR

$$
P(R R-1) /((P(R R-1)+1)
$$

Where $P=$ proportion of population exposed
$\mathrm{Pc}=$ proportion of cases exposed

Cohort Study

Pop AR: Driving Speed

Fast	Dead	Not dead		
	100	1900	2000	
Slow	80	7920	8000	Risk unexposed $=80 / 8000=0.010$
	180	9820	10000	Risk overall $=180 / 10000=0.018$
PopAR=(Riskoverall-Riskunexposed)/Riskoverall				
$=(0.018-0.010)$				
= 44\%				

Pop AR: Drunk Driving

	Dead		Not dead	
Drunk	45	255	300	
Not Drunk	135	9565	9700	Risk unexposed $=135 / 9700=0.014$
	180	9820	10000	Risk overall $=180 / 10000=0.018$

PopAR=(Riskoverall-Riskunexposed)/Riskoverall

$$
\begin{aligned}
& =(0.018-0.014) / 0.018 \\
& =22 \%
\end{aligned}
$$

Conclude

Percentage of the risk in a population that is associated with the exposure to a risk factor

44\% of the driving-related deaths were presumably due to driving too fast

22\% of the driving-related deaths were presumably due to drunk driving

Case-Control Study Population Attributable Risk

Cohort study: Pop AR=P(RR-1)/(P(RR-1)+1) where $\mathrm{P}=$ proportion of population exposed

If OR approximates $R R$ (rare disease) and assume that the proportion of controls exposed approximates the proportion of the population exposed, then

Pop AR=Pcontrol(OR-1)/(Pcontrol(OR-1)+1)
where $\operatorname{Pcontrol}=$ proportion of controls exposed

Summary

	Fast Driving	Drunk Driving
Relative risk	5.0	10.7
Risk difference	4%	14%
Attributable risk	80%	91%
\% all drivers with risk	20%	3%
Population attributable risk	44%	22%

RR / OR	Measure of association	Measure of impact	Question
Risk difference	Yes	No	How much the association could be?
Attributable risk	No	Yes	What is the excess risk between exposed and unexposed persons?
Population attributable			
risk	No	Yes	What proportion of the exposed persons had an outcome presumably due to the exposure?
Yes the total population had			
the outcome presumably			
because of the exposure?			

What is the Appropriate Measure?

"Why should I quit smoking? My friend had lung cancer and she never smoked?"
"He got lung cancer. But he probably would have gotten lung cancer anyway even if he didn't smoke."
"Should I fly on Air India or British Airlines?"

Outcome

At beginning of the study

Developed CHD

Did not develop CHD

Healthy smokers
84
2,916
Healthy non-smokers
4,913

The incidence of CHD among smokers is:
The relative risk for CHD in smokers compared to non smokers is:

The incidence of CHD that can be attributed to smoking is:

The proportion of the total incidence of CHD in smokers that is attributable to smoking is:

Outcome

At beginning of the study

Developed CHD

Did not develop CHD

Healthy smokers
Healthy non-smokers
$84 \quad 2,916$
874,913

The incidence of CHD among smokers is: 28/1000
The relative risk for CHD in smokers compared to non smokers is: 1.61

The incidence of CHD that can be attributed to smoking is: 11/1,000

The proportion of the total incidence of CHD in smokers that is attributable to smoking is: 37.9\%
居nk

