Measure of Association Examples of measure of association

Epidemiologists usually use relative differences to assess causal association (Table 3-1).

Table 3-1 Types of Measures of Association Used in Analytic Epidemiologic Studies

Type	Examples	Usual application
Absolute	Attributable risk in exposed	Primary prevention impact search
difference		for causes
	Population attributable risk	Primary prevention impact
	Efficacy	Impact of intervention on recurrences, case fatality, etc
	Mean differences	
	(continuous outcomes)	Search for determinants
Relative	Relative risk/rate	Search for causes
difference		
	Relative odds	Search for causes

RARE DISEASE:

When the probability (risk) of developing disease is low for both the exposed and the unexposed groups, the probability odds of developing the disease approximate the probabilities.

Table 3-3 Hypothetical Cohort Study of the 1 - Year Incidence of Acute Myocardial Infarction in Individuals with Severe Systolic Hypertension ($\geq 180 \mathrm{~mm} \mathrm{Hg}$) and Normal Systolic Blood Pressure ($<120 \mathrm{~mm} \mathrm{Hg}$)

Myocardial Infarction
Blood

Pressure Status	Number	Present	Absent	Probability	Odds ${ }_{\text {dis }}$
Severe					
Hypertension	10,000	180	9820	$180 / 10,000=0.0180$	$180 /(10,000-180)=$
					$180 / 9820=0.01833$
Normal	10,000	30	9970	$30 / 10,000=0.0030$	$30 /(10,000-30)=$
					$30 / 9970=0.00301$

$R R=0.0180 / 0.0030=6.00$
Probability OR $=0.01833 / 0.00301=6.09$

COMMON DISEASE:

OR is biased estimation of the probabilities.

Table 3-4 Incidence of Local Reactions in the Vaccinated and Placebo Groups, Influenza Vaccination Trial

	Local Reaction				
Group	Number	Present	Absent	Probability	Probability Odds dis
Vaccine	2570	650	1920	$650 / 2570=0.2529$	$650 /(2570-650)=$
					$650 / 1920=0.3385$
Placebo 2410	170	2240	$170 / 2410=0.0705$	$170 /(2410-170)=$	
				$170 / 2240=0.0759$	

Note : Based on data for individuals 40 years old or older in Seltser et al. To avoid rounding ambiguities in subsequent examples based on these data)Figure $3-4$, Tables $3-7$ and $3-9$), the original sample sizes in Seltzer et al's study (257 vaccinees and 241 placebo recipients) were multiplied by 10 .

Source : Data from R Seltser, PE Sartwell, and JA Bell, A Controlled Test of Asian Influenza Vaccine in Population of Families, American Journal of Hygiene, Vol 75, pp 112-135,Ⓒ 1962.

$\mathrm{RR}=0.2529 / 0.0705$	$=3.59$	
Probability OR $=$	$0.3385 / 0.0759$	$=4.46$

$\mathrm{OR}_{\text {exp }}$ and $\mathrm{OR}_{\text {dis }}$: all cases and all noncases

Table 3-5 Hypothetical Case-Control Study of Myocardial Infarction in Relation to Systolic Hypertension, Based on a 1- Year Complete Follow-up of the Study Population from Table 3-3

	Myocardial Infarction	
Systolic Blood Pressure Status*	Present	Absent
Severe hypertension Normal Total	180 (a)	$9820(b)$
	$30(c)$	$9970(d)$
	$19790(b+d)$	

* Severe systolic hypertension $\geq 180 \mathrm{~mm} \mathrm{Hg}$, and normal systolic blood pressure <120 mm Hg .

For the example shown in Table 3-5, the $\mathrm{OR}_{\text {exp }}$ is

$$
\mathrm{OR}_{\exp }=\frac{\frac{180}{30}}{\frac{9820}{9970}}=\frac{180 \times 9970}{9820 \times 30}=6.09=\mathrm{OR}_{\mathrm{dis}}
$$

$\mathrm{OR}_{\text {exp }}$ and $\mathrm{OR}_{\text {dis }}$: all cases and 10% of noncases

If 100% of cases and example of approximately 10% of the noncases were studies, assuming no random variability, results would be identical to those obtained when including all noncases, as in table 3-5.

Table 3-6 Case - Control Study of the Relationship of Myocardial Infarction to Presence of Severe Systolic Hypertension Including All Cases and a 10\% Sample of Noncases from Table 3-5

	Myocardial Infarction	
Systolic Blood Pressure Status*	Present	Absent

Severe hypertension
Normal
Total

$180(a)$	$982(b)$
$30(c)$	$997(d)$
$210(a+c)$	$1979(b+d)$

* Severe systolic hypertension $\geq 180 \mathrm{~mm} \mathrm{Hg}$, and normal systolic blood pressure <120 mm Hg .

$$
O R_{\exp }=\frac{\frac{180}{30}}{\frac{982}{\frac{997}{90}}}=180 \times 997=6.09=\mathrm{OR}_{\mathrm{dis}}
$$

$\mathrm{OR}_{\mathrm{exp}}$ and $\mathrm{OR}_{\text {dis }}: 80 \%$ of cases and 50% of noncases

Example of the fact that the $\mathrm{OR}_{\text {exp }}$ is the same as the $\mathrm{OR}_{\text {dis }}$. This is the reason why the interpretation of the OR in case- control study is prospective.

Sampling method and data are shown in figure 3-4 and table 3-7.

Figure 3-4 Selection of 80% of total cases and 50% of noncases in a case-control study from the study population shown in Table 3-4. Expected composition is assuming no random variability. Source : Data from R Seltser, PE Sartwell, and JA Bell, A Controlled Test of Asian Influenza Vaccine in a Population of Families, American Journal of Hygiene, Vol 75, pp 112-135, © 1962.

Table 3-7 Case - Control Study of the Relationship Between Occurrence of Local Reaction and Previous Influenza Immunization

Vaccination
Cases of Local Reaction
Controls Without Local Reaction
Yes
520
136
Total
$820 \times 0.8=656$ $4160 \times 0.5=2080$

Note : Based on a perfectly representative sample of 80% of the cases and 50% of the controls from the study population shown in Table 3-4 (see Figure 3-4).

Source : Data from R Seltser, PE Sartwell, and JA Bell, A Controlled Test of Asian Influenza Vaccine in a Population of Families, American Journal of Hygiene, Vol 75, pp 112135, © 1962.

$$
O R_{\exp }=\frac{\left[\frac{520}{136}\right]}{\left[\frac{960}{1120}\right]}=4.46=\mathrm{OR}_{\text {dis }}
$$

CASE-CONTROL STUDY:

1. Unmatched case-control design

No need for rarity assumption when
1.1 Control are the total study population at baseline (not only the noncase).
$O R_{\text {exp }}=\frac{\text { Odds }_{\text {exp cases }}}{\text { Odds }_{\text {exp total population }}}=\frac{\left(\frac{a}{c}\right)}{\left(\frac{a+b}{c+d}\right)}=\frac{\left(\frac{a}{a+b}\right)}{\left(\frac{c}{c+d}\right)}=R R$

Example of control group is from the total study population at baseline.
Table 3-8 Cross - Tabulation of a Defined Population by Exposure and Disease Development

Exposure	Cases	Noncases	Total Population (Cases + Noncases)
Present	a	b	$\mathrm{a}+\mathrm{b}$
Absent	c	d	$\mathrm{c}+\mathrm{d}$

$O R_{\text {exp }}$ is an unbiased estimation of $R R$
$\mathrm{OR}_{\text {exp }}=\frac{\text { Odds }_{\text {exp cases }} \text { Odds }_{\text {exp pop }}}{\left(\frac{2570}{2410}\right)}=\frac{\left(\frac{650}{170}\right)}{\left(\frac{170}{2410}\right)}=\frac{\left(\frac{650}{2570}\right)}{\mathrm{q}^{+}} \quad 3.59=R \mathrm{R}$
1.2 Case-cohort study design

Example of a sample of cases and a sample of control group (from the total study population).

Table 3-9 Case - Cohort Study of the Relationship of Previous Vaccination to Local Reaction Previous Vaccination Cases of Local Reaction Cohort Sample

Yes $260 \quad 514$
No 68 482
Total
328
996
Note : Based on a random sample of the study population in Table 3-4, with sampling fractions of 40% for the cases and 20% for the cohort.

Source : Data from R Seltser, PE Sartwell, and JA Bell, A Controlled Test of Asian Influenza Vaccine in a Population of Families, American Journal of Hygiene, Vol 75, pp 112 - 135, © 1962.

Based on case-cohort study, RR can be estimated directly and need not to rely on rarity assumption. In addition, Pop AR can be estimated.

$$
O R_{\exp }=\frac{\frac{260}{68}}{\underline{514}}=3.59=R R
$$

$$
482
$$

Summary of the Influence of Control Selection

Table 3-10 Summary of the Influence of Control Selection on the Parameter Estimated by the Odds Ratio of Exposure in Case - Control Studies Within a Defined Cohort

Design	Population Frame for	Exposure Odds Control Selection Estimates
Case -cohort	Total cohort at baseline	Cumulative incidence ratio
(relative risk)		

Calculation of the OR when there are more than two exposure categories.

Table 3-11 Distribution of Cases of Craniosynostosis and Normal Controls According to Maternal Age

Source: Data from BW Alderman et al, An Epidemiologic Study of Craniosynostosis: Risk Indicators for the Occurrence of Craniosynostosis in Colorado, American Journal of Epidemiology, Vol 128 , pp 431-438, © 1988, The Johns Hopkins University School of Hygiene \& Public Health.

Step for a calculation of the $\mathrm{OR}_{\text {exp }}$
You should approach history of exposure rather than cross-product. concept to avoid confusion of 2×2 table arrangement. .

Exposure	Controls	Cases
Yes	"a"	"c" ${ }^{\text {" }}$
$\mathrm{OR}_{\exp }=$	"d"	
	Odds $_{\text {exp cases }}$	

