Measures of As

Lakkana Thaikruea M.D., M.S., Ph.D.

Community Medicine Department,
Faculty of Medicine, Chiang Mai University, Thailand

Introduction

- One of epidemiological studies' goal is to determine and estimate effects
- Difficult to measure an effect directly
- Possible to measure an association
- Substitution of the association for the effect has both advantage and disadvantage

Quantitative Measures used in Epidemiology

- Measures of disease frequency: Reflect the relative occurrence of the disease in a population.
- Measures of association: Reflect the strength or magnitude of the statistical relationship between exposure status and disease occurrence.
- Measures of effect: Certain measures of association involving disease incidence are also measures of the exposure effect.

Measures of Association

- can be based on
- absolute difference
- relative difference
- Interpretation depends on study designs
- Names are different regard to different textbooks
- Concept is similar

Incidence Measures: Risk and Rate

- Risk (cumulative incidence):

Probability of an individual at risk developing the disease during a given period

- Incidence rate (incidence density):

Occurrence of new cases at a point in time t, per unit of time, relative to the size of the population at risk at time t

Risk Estimation

- Risk (R) is defined as:

The probability of an individual at risk developing the disease during a given period.

- Risk is calculated by:

Number of incident cases of disease occurring in a specified period
$\mathbf{R}=$
Number of people at risk at the start of the specified period

Example: Risk estimation

Individuals

7 -year risk of disease $=2$ / $7=0.28=28 \%$

Incidence Rate Estimation

= The occurrence of new cases at a point in time t, per unit of time, relative to the size of the population at risk at time t (i.e., the occurrence of an event in a population over time)

Number of incident cases of disease occurring in a specified period
I =
Amount of person-time experienced by population at risk in the same period

Example: Risk estimation

Individuals

Effect

Exposure
Disease
Outcome
Determinant

- Relative risk/ Risk ratio:
- Probability of an event in exposed persons compare to the probability of an event in unexposed persons
- Risk ratio (RR) and risk difference (RD) are effect measures.
- Assumption: The risk of disease in the unexposed population is equal to what the risk would have been in the exposed population had everyone been unexposed.

Measures of Association

- Reflect the magnitude of statistical relationship between two variables
- All or part of this relationship may correspond to
(1) effect of the exposure on disease occurrence,
(2) effect of disease on exposure changes, or
(3) non-causal aspects of the association
- Ratio measures--e.g., RR, IR, OR
- Difference measures--e.g., RD, ID, AR
- Model coefficients*
- Correlation coefficients*

Not all measures of association are measures of effect
This lecture focuses on ratio measures

Measures of Association: Ratio

- RR: ratio of two probabilities (exposed group VS unexposed group)
- RR: an effect measure of primary interest in epidemiology
- Null value of "one": corresponds to no association between exposure status and disease
- Value of a ratio: vary between zero and infinity

Interpreting Ratio

- Exact meaning of a ratio measure of association depends on the type of frequency measure.
- Ex: The association between smoking status and lung cancer, a value of 8 for:
- 5 -year risk ratio--A smoker is 8 times more Iikely to develop lung cancer in 5 years than is a non-smoker
- mortality rate ratio--The average mortality rate of lung cancer is 8 times greater in smokers than it is in non-smokers
- prevalence ratio--A smoker is 8 times more Iikely to have lung cancer is a non-smoker

Ratio: Dose-response Relationship

- With > 2 exposure categories, doseresponse relationship can be expressed by comparing each exposure group with a single reference (unexposed) group.
- Ex: Smoking status is categorized into 3 groups, heavy, light and none

IR heavy $=12$ (heavy/none)
IR light $=5$ (light/none)
IRnone= 1 (none/none)
= a positive dose-response relationship, because the more people smoke, the higher the rate of disease.

Measures of Association: Difference

The difference between two risks (exposed group VS unexposed group)

- Risk difference (RD) and rate difference (ID) are measures of effect.*
- Null value of all difference measures: zero
- Difference measures of effect: reflect the magnitude of a public health problem
* Not explicit but implicit comparison
$\mathbf{R D}=\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{0}}=\mathbf{R R}\left(\mathbf{R}_{\mathbf{0}}\right)-\mathbf{R}_{\mathbf{0}}=\mathbf{R}_{\mathbf{0}}(\mathbf{R R}-\mathbf{1})$
- Suppose the $5-\mathrm{yr}$ risk of disease X is 10% in exposed population and 8\% in unexposed population. Then,

$$
R R=1.25 \quad \text { and } \quad R D=0.02
$$

- Interpretation: an exposed person in this population is 1.25 times more likely to get the disease in 5 -yr than is unexposed person; or the difference in risk between exposed and unexposed persons is 2%
- "The 5 -yr risk of disease is 25% greater in exposed persons than in unexposed persons"?

Example: Ratio and Difference Measures

Numbers of new cases of lung cancer and CHD in the U.S. by smoking status

		Lung Cancer		CHD	
Smoking Status	No. People	Cases $\mathbf{I}(\mathbf{1 0} / \mathbf{5 r})$	Cases	I (/105/yr)	
Smokers	$70,000,000$	60,000	85.7	250,000	357.1
Nonsmokers	$150,000,000$	10,000	6.7	250,000	166.7
Rate ratio		12.9			2.14
Rate difference		$79 \times 10^{-5} / \mathrm{yr}$			$190 \times 10^{-5} / \mathrm{yr}$

Lung cancer: incidence rate ratio is greater CHD: incidence rate difference is grater Reflect: CHD is much more common in the U.S. population

I Cohort Study

1. Relative Risk (RR)

- RR refers to rate ratio or risk ratio*
- RR (incidence) of developing a disease in exposed individuals to that in unexposed
e.g. Risk of lung cancer among smoker

Risk of lung cancer among nonsmoker

> *rate ratio ~= risk ratio, when exposure negligibly affects the person-time at risk

RR(cont.)

RR(cont.)

Disease
Yes No

Exposure	Yes	a	b
	No	C	d

$R R=\frac{a /(a+b)}{c /(c+d)}$

2. Odds ratio

- Odds = event/nonevent
- OR = ratio of the odds of developing a disease
(Probability) OR

$$
\begin{aligned}
& =\frac{q_{+} /\left(1-q_{+}\right)}{q_{-} /\left(1-q_{-}\right)} \\
& =\frac{a / b=a d / b c}{c / d}
\end{aligned}
$$

q+ incidence (probability) in exposed
q- incidence (probability) in unexposed

Example: Rare disease

- When the probability (risk) of developing disease is low for both the exposed and the unexposed groups, the probability odds of developing the disease $\sim=$ the probabilities (Table 3-3)

$$
\begin{aligned}
R R & =0.0180 / 0.0030 \\
& =6.00
\end{aligned}
$$

Probability OR=0.01833/ 0.00301

$$
=6.09
$$

Example: Common disease

- When the probability (risk) of developing disease is high, the probability odds of developing the disease is biased estimation of the probabilities (Table 3-4) $R R=0.2529 / 0.0705$
$=\quad 3.59$
Probability OR=0.3385/ 0.0759

$$
=4.46
$$

- OR often used as an approximation of RR
- OR tends to exaggerate the magnitude of the association
- This built-in bias is small when the disease is relatively rare
- OR is directly derived from logistic regression models

- Built-in bias

$$
\begin{aligned}
O R & =\frac{q_{+} /\left(1-q_{+}\right)}{q_{-} /\left(1-q_{-}\right)} \\
& \left.=\frac{q_{+}}{q_{-}} \times 1 \frac{1-q_{-}}{1-q_{+}}\right] \\
& =R R \times \text { built-in bias }
\end{aligned}
$$

q+ incidence (probability) in exposed q- incidence (probability) in unexposed

Example: Built-in bias

- Rare disease: (Table 3-3)

$$
\begin{aligned}
- \text { OR } & =\frac{6.0 \times(1-0.0030)}{1-0.0180} \\
& =6.0 \times 1.015=6.09
\end{aligned}
$$

- Common disease: (Table 3-4)
- OR $=\frac{3.59 \times(1-0.0705)}{1-0.2529}$

$$
=3.59 \times 1.244=4.46
$$

1. Point Prevalence Rate Ratio

- Point Prevalence:
-Frequency of disease or condition at a point in time
- Depends on disease's duration
- Used as a proxy of risk
- Formula of point prevalence odds
$\left[\frac{\text { Point Prev }}{1-\text { Point Prev }}\right]=$ incidence x duration
- Formula of point prevalence

Point Prev = inc x dur x (1- Point Prev)

- If the point prev is low (e.g. 0.05) Point Prev ~ = inc x dur
- PRR
$=\frac{\text { Prev }_{+}}{\text {Prev. }_{-}}=\frac{\text { inc } \times \text { dur }_{+} \times\left(1-\text { Prev }_{+}\right)}{\text {inc } \times \text { dur. }_{-} \times\left(1-\text { Prev }_{-}\right)}$

$$
=\mathbf{R R} \mathbf{x}\left[\frac{\mathrm{dur}_{+}}{\mathrm{dur}_{-}}\right] \times\left[\frac{1-\text { Prev }_{+}}{1-\text { Prev. }_{-}}\right]
$$

- PRR differs from RR due to 2 bias factors

III Case-control Study

1. Odds Ratio

- OR of exposure $\left(\mathrm{OR}_{\text {exp }}\right)$ is mathematically identical to OR of disease $\left(O R_{\text {dis }}\right)$
$O R_{\text {exp }}=\frac{a / c=}{b / d} a d / b c=O R_{\text {dis }}$
The reason why the interpretation of the OR in this study design is prospective.

Characteristic of OR

OR is used to estimate RR when:
 - the disease is rare*, or
 - case-cohort design, or
 -nested case-control design

* When cases studied are representative (regard to exposure history), of all persons with the disease in the pop from which the cases were drawn
* When the control studied are representative (regard to exposure history), of all persons without the disease in the pop from which the cases were drawn

2. OR for matched paired

Pair OR $=\frac{b}{c}$ use Mantel-Haenszel weighing

Important issues

Is there an association between exposure and outcome?
= epidemiologic studies
How can an excess risk be expressed quantitatively?
= type of risk measurement
Is the observed association reflect a causal relationship?
= type of causal relationship; bias; confounding; interaction

Example articles and more info

Download from:

www.oknation.net/blog/lakthai

Thank You

