Descriptive Statistics

Nguyen The Hien, DAH - Vietnam

CONTENT

I. Statistical Method

- 1. Descriptive statistics
- 2. Inferential statistics

II. Probability.

- 1. Definition of probability
- 2. Normal distribution
- 3. Binomial distribution

I. Statistical Method

1. Descriptive statistics

- A method of collecting, organizing, displaying and drawing conclusion of data

2. Inferential statistics

- Use the result of research from sample statistics to population parameter
- Type of inferential statistics methods:
 - + Parameter estimation
 - + Hypothesis testing

(2) Give answer in the world of uncertainty (population)

Summary: Descriptive Statistics

Type of variable	Measurement scale	Statistics	Presentation
Numerical discrete	- Interval Ratio	Mean, or Median, or Mode (rare), Range, SD, IQR	Histogram scatter plot line graph
Numerical continuous	- Interval Ratio	Mean, or Median, or Mode (rare), Range, SD, IQR	Histogram scatter plot line graph
Categorical dichotomous	- Nominal Ordinal	Proportion (%)	Table, Pie, Bar chart
Categorical polychotomous	- Nominal Ordinal	Proportion (%)	Table, Pie, Bar chart

Notation

	Statistics	Parameter
Mean	\overline{X}	μ
Variance	S ²	б²
Standard deviation	S	б
Standard error	$S_{\bar{X}}$	б $_{ar{X}}$
Proportion	Р	π
Correlation coefficient	r	ρ

II. Probability

1. Definition and characteristic

Definition: The chance, or likelihood that an event occurs.

Characteristics:

- Value of probabilities to happen an event will be around 0 – 1
- The total of Pr of all events are 1.0

Ex.

- $Pr(x = n) = X_1 ... > probability of an value/point$
- $Pr(x < n_a) = Sum of Pr(x = n_i) with i = 0, 1, ..., n_a$

----> pace/interval

- $Pr(n_a < x < n_b) = Sum of Pr(x = n_i) with i = a, a+1, ..., b_$

2. Probability distribution

- Continuous probability distribution
 Normal distribution
- Discrete probability distribution
 - Binomial distribution
 - Poisson distribution

2.1. Normal distribution

- Symmetric about the mean: μ
- Mean = median = mode = μ , SD = σ
- Area under the curve = 1 implies 50% of the area to the left of the mean (or median)
- Notation: $X \sim N(\mu, \sigma^2)$
- About 95% of the area is between μ 1.96 σ and μ + 1.96 σ

Shape of data distribution

• Normal Distribution

• Skewed Distribution

Positively skewed

Negatively skewed

Standard normal distribution

- Normal distribution
- Notation: *X* ~ N(0,1)
- Symmetric about mean = 0
- Standard deviation = 1

Areas under the normal curve that lie between 1, 2, and 3 standard deviations on each side of the mean

Standard normal distribution table

- See additional handout
- Column A : Area from ∞ (infinite) to x. This is the Pr ($X \leq x$)
- Column B : Area from X to $+\infty$. This is the Pr ($X \ge x$)
- Column C : Area from 0 to a point Pr ($0 \le X \le x$)
- Column D : Area symmetric about 0

Converting from a $N(\mu, \sigma^2)$ Distribution to a N(0, 1) Distribution

• The formula is:

$$Z = \frac{X - \mu}{\sigma}$$

> Z~N(0, 1)

Therefore, $\Pr(a < X < b) =$ $\Pr\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$

Example

• μ = 200, σ^2 = 400 implies σ = 20, a = 220, b = 260

$$Z_1 = \frac{a - \mu}{\sigma} = \frac{220 - 200}{20} = 1.00$$
$$Z_2 = \frac{b - \mu}{\sigma} = \frac{260 - 200}{20} = 3.00$$

 We have converted the probability statement about N(200, 400) to one about N(0, 1). We can evaluate by using the standard normal tables.

$$\Pr(220 < X < 260) = \Pr\left(\frac{220 - 200}{20} < Z < \frac{260 - 200}{20}\right)$$

 $= \Pr(1.00 < Z < 3.00)$

2.2. Binomial Distribution

- *n* independent trials, each with only two possible outcomes.
 - Example: Yes/No, Sick/not sick
- Probability of success at each trial is some constant, p
- Probability of failure = 1 − p = q

2.2. Binomial Distribution

• Probability of k successes in n trials is

$$\Pr(X = k) = \frac{n!}{(n-k)!k!} p^{k} q^{n-k}$$

$$- k = 0, 1, 2, ..., n
- q = 1 - p
(Pr = p)
- P(x \le n_a) = Sum of Pr (x = n_i) with i = 0, 1, ..., n_a
- P(n_a \le x \le n_b) = Sum of Pr (x = n_i) with i = a, a+1, ..., b$$

Normal approximation to the binomial

- When *n* is large, there are no tables and using the formula is difficult. The Normal Distribution can be used as an approximation to the **Binomial Distribution**
- The Normal Distribution is a good approximation if *n* is large and *p* not too near 0 or 1. The binomial then will be nearly symmetric when $n^*p^*q \ge 5$
- Binomial: mean = np, variance = npq. Let's create a normal distribution that is N(np, npq)
- If *n* is large nough, $npq \ge 5 \implies X \sim B$ (np, npq), $\mu = n^*p; \sigma^2 = n^*p^*q$

Normal approximation to the binomial

- We want Pr (a ≤ X ≤ b) where X is binomially distributed with parameters n and p. The first choice for an approximation is to examine the N(np, npq) normal distribution by getting the area under this curve from a to b
- Continuity Correction: Better to get area under the normal curve
 - For X is between a and b: Pr $(a \frac{1}{2} \le X \le b + \frac{1}{2})$
 - For X > a : Pr (X $\ge a \frac{1}{2}$)
 - For X < a : Pr (X $\leq b + \frac{1}{2}$)

Example: operative complication

• Pr (at most 5 complications) = Pr ($X \le 5$)

- p = 0.20, n = 50

- Normal approximation:
 - mean = *np* = 10
 - variance = npq = 8 > 5

- SD = Square root or SQRT (8) = 2.8284
Pr
$$(X \le 5.5) = \Pr\left(Z \le \frac{5.5 - 10}{2.8284}\right)$$

= Pr $(Z \le -1.59)$
= 1 - Pr $(Z \le 1.59)$
= 1 - 0.9441
= 0.0559

Thank you for your attention!