Descriptive Statistics

Nguyen The Hien, DAH - Vietnam

CONTENT

I. Statistical Method

1. Descriptive statistics
2. Inferential statistics
II. Probability.
3. Definition of probability
4. Normal distribution
5. Binomial distribution

I. Statistical Method

1. Descriptive statistics

- A method of collecting, organizing, displaying and drawing conclusion of data

2. Inferential statistics

- Use the result of research from sample statistics to population parameter
- Type of inferential statistics methods:
+ Parameter estimation
+ Hypothesis testing
(1) Give a clearer picture of what we want to describe in a group (sample)
Descriptive

(2) Give answer in the world of uncertainty (population)

Summary: Descriptive Statistics

$\begin{array}{c}\text { Type of } \\ \text { variable }\end{array}$	$\begin{array}{c}\text { Measurement } \\ \text { scale }\end{array}$	Statistics	Presentation
$\begin{array}{l}\text { Numerical } \\ \text { discrete }\end{array}$	$\begin{array}{l}\text { - Interval } \\ \text { - Ratio }\end{array}$	$\begin{array}{l}\text { Mean, or Median, } \\ \text { or Mode (rare), } \\ \text { Range, SD, IQR }\end{array}$	$\begin{array}{l}\text { Histogram } \\ \text { scatter plot } \\ \text { line graph }\end{array}$
$\begin{array}{l}\text { Numerical } \\ \text { continuous }\end{array}$	- Interval	- Ratio	$\begin{array}{l}\text { Mean, or Median, } \\ \text { or Mode (rare), } \\ \text { Range, SD, IQR }\end{array}$

scatter plot

line graph\end{array}\right]\)| Categorical |
| :--- |
| dichotomous |\quad| - Nominal |
| :--- |
| - Ordinal |

Notation

	Statistics	Parameter
Mean	\bar{X}	μ
Variance	s^{2}	σ^{2}
Standard deviation	S	σ
Standard error	$S_{\bar{X}}$	$\sigma_{\overline{\bar{x}}}$
Proportion	P	π
Correlation coefficient	r	ρ

II. Probability

1. Definition and characteristic

Definition: The chance, or likelihood that an event occurs.
Characteristics:

- Value of probabilities to happen an event will be around 0-1
- The total of Pr of all events are 1.0

Ex.
$-\operatorname{Pr}(x=n)=X_{1}$------> probability of an value/point
$-\operatorname{Pr}\left(x<n_{a}\right)=$ Sum of $\operatorname{Pr}\left(x=n_{i}\right)$ with $i=0,1, \ldots n_{a}$
$-\operatorname{Pr}\left(n_{a}<x<n_{b}\right)=$ Sum of $\operatorname{Pr}\left(x=n_{i}\right)$ with $\left.i=a, a+1, \ldots, b\right]$

2. Probability distribution

- Continuous probability distribution
- Normal distribution
- Discrete probability distribution
- Binomial distribution
- Poisson distribution

2.1. Normal distribution

- Symmetric about the mean: μ
- Mean $=$ median $=\operatorname{mode}=\mu, S D=\sigma$
- Area under the curve $=1$ implies 50% of the area to the left of the mean (or median)
- Notation: $X \sim N\left(\mu, \sigma^{2}\right)$
- About 95\% of the area is between $\mu-1.96 \sigma$ and $\mu+1.96 \sigma$

Areas under the normal curve that lie between 1, 2, and 3 standard deviations on each side of the mean
$\mu=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)}{N}$

Shape of data distribution

- Normal Distribution

- Skewed Distribution

Negatively skewed

Standard normal distribution

- Normal distribution
- Notation: $X \sim N(0,1)$
- Symmetric about mean $=0$
- Standard deviation $=1$

Standard normal distribution table

- See additional handout
- Column A : Area from $-\propto$ (infinite) to x. This is the $\operatorname{Pr}(X \leq x)$
- Column B : Area from X to $+\infty$. This is the $\operatorname{Pr}(X \geq x)$
- Column C : Area from 0 to a point $\operatorname{Pr}(0 \leq X \leq x)$
- Column D : Area symmetric about 0

Converting from a $N\left(\mu, \sigma^{2}\right)$ Distribution to a

 $N(0,1)$ Distribution. The formula is:

$$
Z=\frac{X-\mu}{\sigma}
$$

> $Z^{\sim} N(0,1)$

> Therefore, $\quad \operatorname{Pr}(a<X<b)=$ $\operatorname{Pr}\left(\frac{a-\mu}{\sigma}<Z<\frac{b-\mu}{\sigma}\right)$

Example

- $\mu=200, \sigma^{2}=400$ implies $\sigma=20, a=220, b=260$

$$
\begin{aligned}
& Z_{1}=\frac{a-\mu}{\sigma}=\frac{220-200}{20}=1.00 \\
& Z_{2}=\frac{b-\mu}{\sigma}=\frac{260-200}{20}=3.00
\end{aligned}
$$

- We have converted the probability statement about $N(200,400)$ to one about $N(0,1)$. We can evaluate by using the standard normal tables.

$$
\begin{aligned}
\operatorname{Pr}(220<X<260) & =\operatorname{Pr}\left(\frac{220-200}{20}<Z<\frac{260-200}{20}\right) \\
& =\operatorname{Pr}(1.00<Z<3.00)
\end{aligned}
$$

2.2. Binomial Distribution

- n independent trials, each with only two possible outcomes.
- Example: Yes/No, Sick/not sick
- Probability of success at each trial is some constant, p
- Probability of failure $=1-p=q$

2.2. Binomial Distribution

- Probability of k successes in n trials is

$$
\operatorname{Pr}(X=k)=\frac{n!}{(n-k)!k!} p^{k} q^{n-k}
$$

$-k=0,1,2, \ldots, n$
$-q=1-p$
($\mathrm{Pr}=\mathrm{p}$)
$-P\left(x \leq n_{a}\right)=$ Sum of $\operatorname{Pr}\left(x=n_{i}\right)$ with $i=0,1, \ldots n_{a}$
$-P\left(n_{a} \leq x \leq n_{b}\right)=$ Sum of $\operatorname{Pr}\left(x=n_{i}\right)$ with $i=a, a+1, \ldots, b$

Normal approximation to the binomial

- When n is large, there are no tables and using the formula is difficult. The Normal Distribution can be used as an approximation to the Binomial Distribution
- The Normal Distribution is a good approximation if n is large and p not too near 0 or 1 . The binomial then will be nearly symmetric when $n^{*} p^{*} q \geq 5$
- Binomial: mean $=n p$, variance $=n p q$. Let's create a normal distribution that is $N(n p, n p q)$
- If n is large nough, $n p q \geq 5-->\quad X \sim B$ (np, $n p q), \mu=n^{*} p ; \sigma^{2}=n^{*} p^{*} q$

Normal approximation to the binomial

- We want $\operatorname{Pr}(a \leq X \leq b)$ where X is binomially distributed with parameters n and p. The first choice for an approximation is to examine the $N(n p, n p q)$ normal distribution by getting the area under this curve from a to b
- Continuity Correction: Better to get area under the normal curve
- For X is between a and $b: \operatorname{Pr}(a-1 / 2 \leq X \leq b+1 / 2)$
- For $X>a: \operatorname{Pr}(X \geq a-1 / 2)$
- For $X<a: \operatorname{Pr}(X \leq b+1 / 2)$

Example: operative complication

- Pr (at most 5 complications) $=\operatorname{Pr}(X \leq 5)$
$-p=0.20, n=50$
- Normal approximation:
- mean $=n p=10$
- variance $=n p q=8>5$
$-\mathrm{SD}=$ Square root or $\operatorname{SQRT}(8)=2.8284$

$$
\begin{aligned}
& \operatorname{Pr}(X \leq 5.5)=\operatorname{Pr} \\
& =\operatorname{Pr}(Z \leq-1.59) \\
& =1-\operatorname{Pr}(Z \leq 1.59) \\
& =1-0.9441 \\
& =0.0559
\end{aligned}
$$

Thank you for your attention!

