Inferential statistics

0

Wrap up

Pema Chophel

Inferential statistical methods

- 1. Hypothesis Testing
- 2. Parameter Estimation
- 1. Hypothesis Testing:
 - To ask whether an effect is present or not among different groups.

Steps to consider for a statistical test of a hypothesis

- 1. State the problem
- 2. Formulate hypotheses: one- or two-tailed
- 3. Choose α
- 4. Determine the test statistic
- 5. Calculate the test statistic
- 6. Decision and conclusion

1. State the problem

- One-sample problem
 - Hypotheses are specified about a single distribution (population)
- Two-sample problem
 - Two different distributions (populaitons) are compared

2. Formulate hypotheses

A. Null hypothesis (H_o):

• This is usually a statement of no difference

B. Alternative hypothesis $(H_1 \text{ or } H_a)$:

• This is the statement we will accept if we reject the null hypothesis

Possible scenarios

	H ₀ is True	H_0 is False
Accept H ₀	1 – α (Correct decision)	β (Type II error)
Reject H ₀	α (Type I error)	1 - β = power (Correct decision)

- Type I error is the probability of rejecting H_0 when H_0 is true
- Type II error is the probability of accepting H_0 when H_0 is false

3. Choosing α level

- Level of significance
 - 1% (0.01), 5% (0.05), 10% (0.10)
- 4. Determine the test statistic

Need understanding probability distribution and asumption

- Analysis of continuous outcome
- Analysis of categorical outcome

5. Calculate the test statistic

- Most test statistics are of the form
 - 1. One sample

2. Two sample

$$z = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - 0}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}} \sim N(0,1)$$

6. Decision and conclusion

Depends on:-

- 1. Critical value
- 2. p-value
- 1. Critical value:- The critical value is a factor used to compute the margin of error

2. p value

- This is the probability of getting a value of the test statistic this extreme or more extreme, given H₀ is true
- Suggested terminology (conventional)
 - $p \le 0.001$ Very highly statistically significant
 - $0.001 \le p < 0.01$ Highly statistically significant
 - $0.01 \le p < 0.05$ Statistically significant
 - *p* ≥ 0.05
- Not statistically significant

p value property

- Small difference and small sample size
 - Very large p value
- Small difference and large sample size
 - Small or large p value
- Large difference and small sample size
 - Small or large p value
- Large difference and large sample size
 - Very small p value

