

Taught by Dr. Pratap Singhasivanon

Wrap up by Dr. Chollasap Sharma & Dr. Ranida Poksiri

Objectives

- The concept of systematic errors.
- Types of systematic error.
- Misclassification
- Confounding variables
- Methods to control confounding

Coffee and Cancer of the Pancreas

Brian MacMahon, M.D., Stella Yen, M.D., Dimitrios Trichopoulos, M.D., Kenneth Warren, M.D., and George Nardi, M.D.

N Engl J Med 1981; 304:630-633 March 1981

Drinking coffee CA Pancrease

OR = 2.7

With \geq 3 cups / day = 2.7 ; 95% C.I (1.6 to 4.7).

Case-control Study of Coffee and Pancreatic Cancer: Selection Bias

Coffee and cancer of the pancreas: Use of population-based controls

•Gold et al. Cancer 1985

	Case Control	
Coffee: ≥ 1 cup day	84	82
No coffee	10	14

OR = (84/10) / (82/14) = 1.4 (95% CI, 0.55 - 3.8)

So, when population-based controls were used, there was no strong association between coffee and pancreatic cancer

Jeff Martin, UCSF

Goal of epidemiological study

Accurate measurement of factors & outcomes

Association

A 'statistical dependence between ≥ 2 events, characteristics, or other variables'.

Bailey L, Vardulaki K, Langham J, Chandramohan D. Introduction to Epidemiology. Black N, Raine R, editors. London: Open University Press in collaboration with LSHTM; 2006

Explanation for the observed difference

- 1. Chance (Random error)
- 2. Bias (Systematic error)
 - Selection
 - Information
 - Confounding
- 3. Effect of exposure

FRAMEWORK FOR THE INTERPRETATION

IS THERE A VALID STATISTICAL ASSOCIATION?

Is the association likely to be due chance? Is the association likely to be due bias? Is the association likely to be due confounding?

CAN THIS VALID STATISTICAL ASSOCIATION BE JUDGED AS CAUSE AND EFFECT?

RANDOM ERROR

Refers to **fluctuations** around a true value because of **Sampling variability**

SYSTEMATIC ERROR

Any difference between the **true value** and that actually obtained i.e the result of **all causes** other than Sampling variability.

Errors in epidemiological studies

Sample size

Bias

 Occurs when an estimated association (RR, OR, etc.) deviates from the true measure of association

• **Bias** may be introduced

Classifying types of bias

- Selection bias differential access to the study population
- Information bias inaccuracy in measurement or classification
- Confounding bias unfair comparison

VALIDITY :

A study is valid if its results corresponds to the **truth**, **no systematic error** or should be as small as possible Different combinations of high and low reliability and validity

- Internal validity: whether the study provides an unbiased estimate of what it claims to estimate
- *External validity*: whether the results from the study can be generalized to some **other** population

Internal and External Validity

Selection Bias

- Distortions that arise from
 - Procedures used to select subjects
 - Factors that influence study participation
 - Factors that influence participant attrition

Example:

 If cases & controls or exposed & nonexposed individuals were selected in such a way that an association is observed even though exposure & disease are not associated

May result from withdrawal or losses to F/U of study subjects

Case-Control Study

Case-control studies are prone to selection bias attributable to flawed sampling of base populations.

"Cases and Controls should be representative of the same base experience"

Source population

 $\left(\right)$

Case-Control Design

The identification of the appropriate

study base (source population) from which to select controls is the primary challenge in the design of case-control studies

Selection Bias

-Can result in **over- or under- estimation** of the true magnitude of the relationship between an **exposure** and an **outcome**

-May **reduce** the validity of the study

Selection Bias

- To avoid it, ensure that:
 - -Subjects are representative of target population
 - -Study and comparison groups are **similar** except for variables being investigated
 - -Subject losses are kept to a minimum