Matching and stratified analysis

Dr.Yongjua Laosiritaworn

Introductory on Field Epidemiology
1 July 2015, Thailand

Confounding

Must be a risk factor of outcome
Associated with exposure
Not an intermediate step between exposure - outcome

Control of Confounding

- In study design
- Randomization
- Restriction
- In analysis
- Stratification
- Adjustment/Standardization
- Multivariable analysis
- In study design and analysis
- Matching

Randomization

-Every individual has the same chance of being classified in either of the two groups.

- If sample size is big enough, two groups are comparable in terms of measured and unmeasured confounders.

-Strength:

-Controls confounders even those unsuspected
-Study groups are comparable
-Permits evaluation of association between exposure and outcome for varying levels of the factor

-Limitation:

- Not easy to perform
-Ethical problems
-Expensive

Restriction

-Putting admissibility criteria for subjects and limiting enrollment into the study to individuals who fall within a specified category or categories of the confounder.

-Strength:

- Straightforward
-Convenient if criteria are narrow
- Inexpensive

-Limitation:

-Reduces the number of subjects eligible to participate
-Difficult if criteria are not narrow
-Does not permit evaluation of association between exposure and outcome for varying levels of factor

Multivariable Analysis

-Analysis of data through construction of mathematical model that takes into account number of variables at the same time

-Strength:

-Describes efficiently the association between exposure and outcome taking in consideration the impact of several other variables simultaneously.

-Limitation:

- Many assumptions required for modeling
-The choice of the appropriate model is complex and requires training and experience

Stratification

- Stratification is a technique used to control confounding in the analysis stage that involves the evaluation of the association within homogeneous categories or strata of the confounding factor
- Involves separating a sample into two or more subgroups according to specified levels of a third variable

Stratification

Example: A Case-control Study

Crude 2x2 table

	$\mathrm{D}+$	$\mathrm{D}-$	Total
$\mathrm{E}+$	1000	838	1838
$\mathrm{E}-$	100	262	362
Total	1100	1100	2200

$$
\begin{aligned}
\mathrm{OR} & =(1000 \times 262) /(838 \times 100) \\
& =3.13
\end{aligned}
$$

Question: Is the OR distorted due to confounding?

Determine the OR of the exposure (E) separately for $C+$ and C

Stratum-specific OR $=10$
Stratum-specific OR $=10$

Adjusted OR = 10

Crude OR $=3.13$

	$D+$	$D-$	Total
$E+$	1000	838	1838
$E-$	100	262	362
Total	1100	1100	2200

1. Determine, separately for $\mathrm{E}+$ and $\mathrm{E}-$, whether the confounder (C) and the outcome (D) are associated.

In E+

	$\mathrm{D}+$	$\mathrm{D}-$	Total
$\mathrm{C}+$	900	819	1719
$\mathrm{C}-$	100	19	119
Total	1000	838	1838

$O R=0.2$

In E-

	$\mathrm{D}+$	$\mathrm{D}-$	Total
$\mathrm{C}+$	10	91	101
$\mathrm{C}-$	90	171	261
Total	100	262	362

$\mathrm{OR}=0.2$

Crude OR $=3.13$

	$D+$	$D-$	Total
$E+$	1000	838	1838
$E-$	100	262	362
Total	1100	1100	2200

2. Determine, separately for $\mathrm{D}+$ and $\mathrm{D}-$, whether the confounder (C) and the Exposure (E) are associated.

	C+	C-	Total		C+	C-	Total
E+	900	100	1000	E+	819	19	838
E-	10	90	100	E-	91	171	262
Total	910	190	1100	Total	910	190	1100
$\mathrm{OR}=81$				$\mathrm{OR}=81$			

3. We must determine whether it is safe to assume C is not a link in the causal chain between RF and D.

> Depends on existing content knowledges or theories e.g. patho-physiology of diseases

If this assumption can be made we can conclude that C is a confounder of D.

Strategy to take into account a third factor in data analysis

1) Crude analysis
2) Stratified analysis

Crude OR
Stratify by levels of third factor

a_{2}	b_{2}
c_{2}	d_{2}

Strategy to take into account a third factor in data analysis

3) Compare stratified ORs : Woolf test for heterogeneity
4) Where is the crude OR?

Strategy to take into account a third factor in data analysis

5a)
Woolf test: $\mathrm{OR}_{1} \neq \mathrm{OR}_{2}$

Third factor $=$ Effect modifier

No computation of adjusted OR
Stratum-specific results of the association between exposure and outcome

Strategy to take into account a third factor in data analysis

5b)
Woolf test: OR1 \approx OR2
OR_{1}
OR_{2}

Crude OR

Computation of Mantel-Haenszel adjusted OR

Strategy to take into account a third factor in data analysis

5b)

	$\mathrm{D}+$	$\mathrm{D}-$	Total
$\mathrm{E}+$	a	b	N_{1}
$\mathrm{E}-$	c	d	N_{0}
Total	M_{1}	M_{0}	N

Computation of Mantel-Haenszel Adjusted Odds Ratio $\left(\mathrm{OR}_{\mathrm{M}-\mathrm{H}}\right.$ or Adjusted OR)

$$
\mathrm{OR}_{\mathrm{M}-\mathrm{H}}=\frac{\Sigma\left[\left(\mathrm{a}_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}}\right) / \mathrm{N}_{\mathrm{i}}\right]}{\Sigma\left[\left(\mathrm{b}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}\right) / \mathrm{N}_{\mathrm{i}}\right]}
$$

Strategy to take into account a third factor in data analysis

if $\mathrm{OR}_{\mathrm{M}-\mathrm{H}} \neq \mathrm{OR}_{\text {Crude }}$ (no statistical test; somebody suggest differ more than 10-15\%) and
 if Third factor complies the conditions

then:
Third factor = Confounder

Crude OR is wrong
Proper measure of association between exposure and outcome given by adjusted $\mathrm{OR}_{\mathrm{M}-\mathrm{H}}$

Strategy to take into account a third factor in data analysis

5c)
Woolf test: OR1 \approx OR2

$\mathrm{OR}_{\mathrm{M}-\mathrm{H}} \approx \mathrm{OR}_{\text {Crude }}$

Third factor $=$ no role

Use crude OR to measure the association between exposure and outcome

For Cohort Study (Count Data)

	$\mathrm{D}+$	$\mathrm{D}-$	Total
$\mathrm{E}+$	a	b	N_{1}
$\mathrm{E}-$	c	d	N_{0}
Total	M_{1}	M_{0}	N

Computation of Mantel-Haenszel Adjusted Risk Ratio $\left(R_{\text {M-H }}\right.$ or Adjusted RR)

$$
\mathrm{RR}_{\mathrm{M}-\mathrm{H}}=\frac{\Sigma\left[\left(\mathrm{a}_{\mathrm{i}} \mathrm{~N}_{0 \mathrm{i}}\right) / \mathrm{N}_{\mathrm{i}}\right]}{\Sigma\left[\left(\mathrm{c}_{\mathrm{i}} \mathrm{~N}_{1 \mathrm{i}}\right) / \mathrm{N}_{\mathrm{i}}\right]}
$$

For Cohort Study (Person-Time Data)

	No. of Case	Person-Time
$\mathrm{E}+$	a	T_{1}
$\mathrm{E}-$	b	T_{0}
Total	M	T

Computation of Mantel-Haenszel adjusted Rate Ratio (IRR ${ }_{\text {M-H }}$ or Adjusted IRR)

$$
\operatorname{IRR}_{M-H}=\frac{\Sigma\left[\left(\mathrm{a}_{\mathrm{i}} \mathrm{~T}_{0 \mathrm{i}}\right) / \mathrm{T}_{\mathrm{i}}\right]}{\Sigma\left[\left(\mathrm{b}_{\mathrm{i}} \mathrm{~T}_{1 \mathrm{i}}\right) / \mathrm{T}_{\mathrm{i}}\right]}
$$

Stratification

- Strength:
- Easy for limited variables with limited number of categories
- Permits evaluation of confounding and interaction
- Permits evaluation of association between exposure and outcome for varying levels of the factor
- Limitation:
- Difficult if many variables with varying number of categories are required

Matching

Matching

- Ensures that confounding factor is equally distributed among both study groups
- Case - control studies: controls selected to match specific characteristics of cases
- Cohort studies: unexposed selected to match specific characteristics of exposed
- Balanced data set achieved
- Prevents confounding
- Increase study precision / efficiency

Focus on case-control studies

Types of matching

1. Individual matching

- Controls selected for each individual case by matching variable / variables
- 1 case : 1 control - pairs of individuals
- 1 case : n controls - triplets, quadruplets,
- Continuous variable
- Exact matching: e.g. age 42 yr vs 42 yr
- Caliper matching: e.g. age 42 yr vs $42 \pm 5 \mathrm{yr}$
- Categorical variable:
- Stratum matching: e.g. male vs male

Types of matching

2. Frequency matching

- Controls selected in categories of matching variable according to the distribution of matching variable among cases
- Start recruit controls after we get all cases.

In both types, in analysis we must take matching design into account

- Stratified analysis

Individual matching (1:1)

- Echovirus meningitis outbreak, Germany, 2001
- Was swimming in pond " A " risk factor?
- Case control study with each case matched to one control

Individual matching (1:1)

Controls						
		Exposed	Unexposed	Total Ma	ched 2x	table
$\begin{array}{lllll}\text { Exposed } & 194 & 46 & 240 \\ \text { Cases } & & & \end{array}$						
	Unexposed	6	29	35		
Total		200	75	275		
			Cases		Controls	Total
Unmatched 2x2 table			Exposed	d 240	200	440
			Unexposed	d 35	75	110
			275		275	550

Individual matching: Analysis

- Stratified analysis
- Each pair, triplet, quadruplet, ... a stratum
- Calculate Mantel-Haenszel odds ratio

$$
\mathbf{O R}_{\mathbf{M - H}}=\frac{\Sigma\left[\left(\mathrm{a}_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}}\right) / \mathrm{N}_{\mathrm{i}}\right]}{\Sigma\left[\left(\mathrm{b}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}\right) / \mathrm{N}_{\mathrm{i}}\right]}
$$

	$D+$	$D-$	Total
$E+$	a	b	N_{1}
$E-$	c	d	N_{0}
Total	M_{1}	M_{0}	N

Individual matching 1:1-1 pair a stratum
Matched 2x2 table

Controls

Exposed
Exposed e f
Cases
h

Individual Matching (1:1): Analysis

Situation e

	Case	Control	Total	$a d / N$	$b c / N$
Exposed	1	1	2	$0 / 2$	$0 / 2$
Unexposed	0	0	0		
Total	1	1	2		

Individual Matching (1:1): Analysis

Situation f

	Case	Control	Total	ad / N	bc / N
Exposed	1	0	1	$1 / 2$	$0 / 2$
Unexposed	0	1	1		
Total	1	1	2		

Individual Matching (1:1): Analysis

Situation g

	Case	Control	Total	ad / N	bc / N
Exposed	0	1	1	0	$0 / 2$
Unexposed	1	0	1	2	
Total	1	1	2		

Individual Matching (1:1): Analysis

Situation h

	Case	Control	Total	ad / N	bc / N
Exposed	0	0	0	$0 / 2$	$0 / 2$
Unexposed	1	1	2		
Total	1	1	2		

Individual Matching (1:1): Analysis

	ad / N	bc / N
Situation e	0	0
Situation f	$1 / 2$	0
Situation g	0	$1 / 2$
Situation h	0	0

$$
\begin{aligned}
O R_{M-H} & =\frac{\sum\left[a_{i} d_{i} / N_{i}\right]}{\sum\left[b_{i} c_{i} / N_{i}\right]}=\frac{0 \mathrm{e}+1 / 2 \mathrm{f}+0 \mathrm{~g}+0 \mathrm{~h}}{0 \mathrm{e}+0 \mathrm{f}+1 / 2 \mathrm{~g}+0 \mathrm{~h}}=\frac{\mathrm{f}}{\mathrm{~g}} \\
& =\frac{\sum \text { discordant pairs where case exposed }}{\sum \text { discordant pairs where control exposed }}
\end{aligned}
$$

Individual Matching (1:1): Analysis

Echovirus meningitis outbreak, Germany, 2001 Was swimming in pond " A " risk factor?
Case control study with each case matched to one control

Controls

		Controls		
		Exposed	Unexposed	Total
Cases	Exposed	194	46	240
	Unexposed	6	29	35
Total		200	75	275
	OR_{M}	$=\frac{\mathrm{f}}{\mathrm{~g}}=$	$=7.67$	

Matching 1 case to n controls - analysis

- Same principle as 1:1 matching (pair = stratum)
- Constitute
- Triplet (1 case, 2 controls) yields 2 pairs
- Quadruplet (1 case, 3 controls) yields 3 pairs
- Stratified analysis
- Each triplet, quadruplet, ... a stratum
- Only discordant pairs (within triplets, quadruplets, ..) contribute to the $\mathrm{OR}_{\mathrm{M}-\mathrm{H}}$ estimate:

Matching: 1 case to 2 controls (triplets)

Controls: exposed (+) unexposed (-)

Exposed	a	b	c
	+ / + +	+ / + -	+ / - -
	0 DPs	1 DP	2 DPs
Cases	d	e	1
	- / + +	- / + -	- 1 - -
Unexposed	2 DPs	1 DPs	0 DPs

$\mathrm{OR}_{\text {MH }}=$

Matching: 1 case to 3 controls (quadruplets)

Controls: exposed (+) unexposed (-)

	a	b	c	d
Exposed	$\begin{gathered} +1+++ \\ 0 \mathrm{DPs} \end{gathered}$	$\begin{gathered} +/++- \\ 1 \text { DP } \end{gathered}$	$2 \text { DPs }$	$\begin{array}{r} +/--- \\ 3 \mathrm{DPs} \end{array}$
Cases				
Unexposed	$\begin{array}{\|c\|} \hline \text { e } \\ -/+++ \\ 3 \text { DPs } \end{array}$	$\begin{gathered} \mathrm{f} \\ -/++- \\ 2 \text { DPs } \end{gathered}$	$\begin{gathered} \hline g \\ -/+- \\ 1 \text { DPs } \end{gathered}$	$\begin{gathered} \hline \text { h } \\ -/--- \\ 0 \text { DPs } \end{gathered}$

(a \times 0DPs) $+(b \times 1 D P)+(c \times 2 D P s)+(d \times 3 D P s) \quad(C a+/ C o-)$
$\mathrm{OR}_{\text {MH }}=$

$$
(e \times 3 D P s)+(f \times 2 D P s)+(g \times 1 D P)+(h \times 0 D P s) \quad(C a-/ C o+)_{39}
$$

Frequency (group) matching

Controls selected in categories of matching variable according to the distribution of matching variable among cases; confounding factor is equally distributed

Age (yrs)	Cases	Controls, matched
$0-14$	10	10
$15-29$	15	15
$30-44$	35	35
>44	25	25
Total	85	85

Frequency matching: Analysis

Why stratified analysis when matching?

- Matching eliminates confounding, however, introduces bias
- Controls not representative of source population as selected according to matching criteria (selection bias)
- Cases and controls more alike.

By breaking match, OR usually underestimated

- Matched design => matched analysis

Analysis of matched data

- Frequency matching
- With many strata (matching for >1 confounder, numerous nominal categories) - sparse data problem
- Multivariate analysis
- Individually matched data - conditional logistic regression
- Logistic regression for matched data
- "Conditional" on using discordant pairs only
- Matching variable itself cannot be analysed
- Testing for interaction of matching variable possible

Overmatching

- Matching variable "too closely related" associated with with exposure (not disease) (increase frequency of exposure-concordant pairs)
=> association obscured
- Matching variable is not a confounder (associated with disease, but not exposure)
=> statistical efficiency reduced
- Matching process too complicated
=> difficulty in finding controls

Example: Overmatching

- 20 cases of cryptosporidiosis
- ? associated with attendance at local swimming pool
- Two matched case-control studies
- Controls from same general practice and nearest date of birth
- Cases nominated controls (friend controls)

Overmatching

		Controls		
		Exposed	Unexposed	
Cases	Exposed	1	15	
	Unexposed	1	3	
			Controls	
		Exposed	Unexposed	
		13	3	

$$
\begin{aligned}
& \text { GP, age - matched } \\
& O R_{\mathrm{MH}}=\mathrm{f} / \mathrm{g}=15 / 1=15
\end{aligned}
$$

Friend - matched
$\mathrm{OR}_{\text {MH }}=\mathrm{f} / \mathrm{g}=3 / 1=3$

Advantages of matching

- Useful method in case-control studies to control confounding
- Can control for complex environmental, genetic, other factors
- Siblings, neighbourhood, social and economical status, utilization of health care
- Can increase study efficiency, optimise resources in small case-contol studies
- Overcomes sparse-data problem by balancing the distribution of confounders in strata
- Case-control study (1:1) is the most statistically efficient design
- When number of cases is limited (fixed) statistical power can be increasesd by 1 :n matching (<1:4 power gain small)
- Sometimes easier to identify controls
- Random sample may not be possible

Disadvantages of matching

- Cannot assess the main effect of matching variable on the disease
- Overmatching on exposure will bias OR towards 1
- Complicates statistical analysis (additional confounders?)
- Residual confounding by poor definition of strata
- Sometimes difficult to identify appropriate controls
- If no controls identified, lose case data

Final Messages

- Do not match routinely
- "Unless one has very good reasons to match, one is undoubtedly better of avoiding the inclination."
- Useful technique if employed wisely
- Prevents confounding (balanced data sets)
- Can control for complex factors (difficult to measure)
- Increase precision / efficiency
- If you match
- make sure you match on a confounder
- do matched analysis

Further Readings

- Epidemiology Kept Simple, $2^{\text {nd }}$, B. Gertsman.
- Epidemiology: Concepts and Methods, $1^{\text {st }}$ Ed., WA. Oleckno.
- Modern Epidemiology, $3^{\text {rd }}$ Ed., KJ. Rothman et al.

Thank you

Acknowledgements

Dr. Panithee Thammawijaya

