Interaction

Dr.Yongjua Laosiritaworn

Introductory on Field Epidemiology 1 July 2015, Thailand

Interaction

- A situation in which two or more risk factors modify the effect of each other with regard to the occurrence or level of a given outcome
- > Also known as "Effect Modification" or, more precisely, "Effect Measure Modification"
- In simplest situation, an interaction is formed when a third variable modifies the relationship between an exposure and outcome
- It is distinguished from confounding

Positive vs Negative Interaction

- Interaction means having unexpected outcome
- If risk/rate is greater than expected
 - Positive interaction or Synergism
 - 2 + 3 > 5
 - $2 \times 3 > 6$
- If risk/rate is less than expected
 - Negative interaction or Antagonism
 - 2 + 3 < 5
 - 2 x 3 < 6

Conceptual Framework of the definition of interaction based on comparing expected and observed joint effects

A. When there is <u>no interaction</u>, the joint effect of risk factors A and Z equals the sum of their independent effects :

Conceptual Framework of the definition of interaction based on comparing expected and observed joint effects

B. When there is <u>positive interaction</u> (synergism). The observed joint effect of risk factors A and Z is greater than that expected on the basis of summing the independent effects of A and Z :

Conceptual Framework of the definition of interaction based on comparing expected and observed joint effects

C. When there is <u>negative interaction</u> (antagonism), the observed joint effect of risk factors A and Z is smaller than that expected on the basis of summing the independent effects of A and Z :

nteraction (Miettinen, 1974)

SAMPLE BASED

Statistical Interaction

POPULATION BASED

- Effect Modification
- Biological Interaction

Statistical Interaction

- Interaction is "model dependent"
- Depends on deviation from statistical model (not biologic)
- There are two models (or two ways of expectation)

2 Models

Additive Model

Difference measure: Risk Difference (RD) Rate Difference

Multiplicative Model

Ratio measure: Risk Ratio (RR) Incidence Rate Ratio (IRR) Odds Ratio (OR)

Evaluation of Interaction

- > Homogeneity of Effects
- Comparison of observed and expected joint effects
- > Multivariate modeling

Note: The assessment of interaction should also be based on knowledge from previous studies or a biological basis

10

Evaluation of Interaction

Homogeneity of Effects

Comparison of observed and expected joint effects

> Multivariate modeling

Homogeneity of Effects

- Between individual (measured by the group) heterogeneity of the effect of the risk factor
- Does the <u>magnitude</u> or <u>direction</u> of the effect of exposure (E) on outcome (O) vary according to the occurrence of some other variable (M) ?

> Example:

- If diabetes is a stronger risk factor for CHD in women than in men
- If diabetes is a stronger risk factor for CHD in women than in men only among older subjects
- Both variables (gender and age) are needed to modify the effect of diabetes

Homogeneity of Effects – Additive Model

<u>Additive interaction</u> is present when the RD (risk difference) varies across strata of the effect modifier (M)

Homogeneity of Effects – Additive Model

> Example - Additive Interaction:

Modifier	Exposure	Incidence Rate (per	RD (per 1000)
(M)	(E)	1000)	
No	No	10.0	Ref.
INO	Yes	20.0	10.0
Vac	No	30.0	Ref.
IES	Yes	40.0	10.0

No additive interaction ; RD does not vary according to M

14

Homogeneity of Effects – Additive Model

> Example - Additive Interaction:

Modifier	Exposure	Incidence Rate (per	RD (per 1000)
(M)	(E)	1000)	
No	No	5.0	Ref.
	Yes	10.0	5.0
Vac	No	10.0	Ref.
res	Yes	30.0	20.0

Additive interaction ; RD does vary according to M

High Blood Pressure (Y) Smokers Non-smokers Age (X) **High Cholesterol** Urban **(Y)** Rural

Age (X)

Additive Model (No interaction)

Only change in intercepts no change in slope irrespective of the value of Xi which is being held constant

Additive Interactive Model

There is change in both intercepts and slope as the level of Xi which is held constant and varied

Homogeneity of Effects – Multiplicative Model

<u>Multiplicative</u> interaction is present when the RR, IRR or OR varies across strata of the effect modifier (M)

Homogeneity of Effects – Multiplicative Model

> Example – Multiplicative Interaction

Modifier	Exposure	Incidence Rate (per	IRR
(M)	(A)	1000)	
No	No	10.0	Ref.
	Yes	20.0	2
Voo	Νο	25.0	Ref.
Tes	Yes	50.0	2

No multiplicative interaction; IRR does not vary according to M

Homogeneity of Effects – Multiplicative Model

> Example – Multiplicative Interaction

Modifier	Exposure	Incidence Rate (per	IRR
(M)	(A)	1000)	
No	No	10.0	Ref.
	Yes	20.0	2
Voo	Νο	25.0	Ref.
res	Yes	125.0	5

Multiplicative interaction; IRR does vary according to M

Evaluation of Interaction

> Homogeneity of Effects

Comparison of observed and expected joint effects

> Multivariate modeling

Comparison Observed and Expected Joint Effects

> The expected joint effect can be estimated by assuming that the effects of E and M are independent

Interaction is present when the observed joint effect of E and M differs from the expected joint effect

So, to compare the observed and expected joint effects of E and M, we need to estimate their independent effects

Comparison Observed and Expected Joint Effects: Additive Interaction

- The joint effect of exposure (E) and modifier (M) is estimated as the arithmetic sum of the independent effects measured by the RD
- > Additive interaction is not present when:

```
RD_{E+M+} = RD_{E+M-} + RD_{E-M+}
or
(RR_{E+M+} - 1) = (RR_{E+M-} - 1) + (RR_{E-M+} - 1)
(IRR_{E+M+} - 1) = (IRR_{E+M-} - 1) + (IRR_{E-M+} - 1)
(OR_{E+M+} - 1) = (OR_{E+M-} - 1) + (OR_{E-M+} - 1)
```


Comparison Observed and Expected Joint Effects: Additive Interaction

> Example – <u>Absence</u> of Additive Interaction

Strata	Observed Incidence	Observed RD
	Rate (per 1000)	(per 1000)
E- M-	10.0	Ref.
E- M+	20.0	10.0
E+ M-	30.0	20.0
E+ M+	40.0	30.0

Joint Expected RD = Obs RD $_{E+M-}$ + Obs RD $_{E-M+}$ = 10.0 + 20.0 = 30.0 Joint Observed RD = 30.0

Comparison Observed and Expected Joint Effects: Additive Interaction

> Example – <u>Presence</u> of Additive Interaction

Strata	Observed Incidence	Observed RD
	Rate (per 1000)	(per 1000)
E- M-	10.0	Ref.
E- M+	20.0	10.0
E+ M-	30.0	20.0
E+ M+	60.0	50.0

Joint Expected RD = Obs RD $_{E+M-}$ + Obs RD $_{E-M+}$ = 10.0 + 20.0 = 30.0 Joint Observed RD = 50.0

Comparison Observed and Expected Joint Effects: Multiplicative Interaction

The joint <u>expected effect</u> of risk factor (E) and modifier (M) is estimated by multiplying the independent effects measured by the RR, IRR or OR

Multiplicative interaction is not present when:
 RR_{E+M+} = RR_{E+M-} × RR_{E-M+}
 IRR_{E+M+} = IRR_{E+M-} × IRR_{E-M+}
 OR_{F+M+} = OR_{E+M-} × OR_{E-M+}

Comparison Observed and Expected Joint Effects: Multiplicative Interaction

> Example – <u>Absence</u> of Multiplicative Interaction

Strata	Observed Incidence	Observed IRR
	Rate (per 1000)	
E- M-	10.0	Ref.
E- M+	20.0	2.0
E+ M-	30.0	3.0
E+ M+	60.0	6.0

Joint Expected IRR = $2.0 \times 3.0 = 6.0$ Joint Observed IRR = 6.0

Comparison Observed and Expected Joint Effects: Multiplicative Interaction

> Example – <u>Presence</u> of Multiplicative Interaction

Strata	Observed Incidence	Observed IRR
	Rate (per 1000)	
E- M-	10.0	Ref.
E- M+	20.0	2.0
E+ M-	30.0	3.0
E+ M+	90.0	9.0

Joint Expected IRR = $2.0 \times 3.0 = 6.0$ Joint Observed IRR = 9.0

Evaluation of Interaction

- > Homogeneity of Effects
- Comparison of observed and expected joint effects
- > Multivariate modeling

Multivariate Modeling

- The usual approach is to fit regression models that contain cross-product terms and then to analyze regression coefficients
- In general,
 - Logistic regression models detect multiplicative interaction
 - Linear models can be used to assess both additive and multiplicative interactions

Which of the 2 models we should use :

1. Additive model:

 For addressing clinical or public health concerns regarding disease risk/frequency reduction, deviation from additivity appears to be most relevant

2. Multiplicative model:

 \mathbf{O}

- Able to assessing causality probability
- More convenient statistical properties

Example

Asbestos Exposure, Smoking and Lung Cancer Risk

Smokers	Exposed to asbestos 35/1000	Not exposed to asbestos 10/1000
Non-smokers	5/1000	1/1000
Rate difference	30/1000	9/1000
Rate ratio	7.0	10.0

Source: N. Pearce, 2005

Qualitative Vs. Quantitative Interaction

> Quantitative:

- When the association between E and O is in the same direction in each stratum of M, and
- Strength of association differs in each stratum of M

> Qualitative:

- When the effects of E on O are in opposite directions (crossover) according to M, or
- When there is an association between E and O in one strata of M, but not in the other

Interaction Vs. Confounding

- > Generally, distinct phenomena
- Confounding is undesirable make it difficult to evaluate whether a statistical association is also causal
- Interaction is part of the web of causation and may have important implications for preventive intervention
- If interaction is found to be present, it is <u>inappropriate</u> to adjust for the effect modifier

Framework for the interpretation of an epidemiologic study

> Is there a valid statistical association?

- Is the association likely to be due chance?
- Is the association likely to be due bias?
- Is the association likely to be due confounding?
- Issue of error
- > Does the association vary according to other factor?
 - Issue of effect modifier
- Can this valid statistical association be judged as cause and effect?
 - Issue of causal association

Further Readings

- > Modern Epidemiology, 3rd Ed., K. Rothman et al.
- Epidemiology: Beyond the Basics, 3rd Ed., M. Szklo & J. Nieto.
- > Epidemiology, 5th Ed., L. Gordis.
- Epidemiology: Concepts and Methods, 1st Ed., W. Oleckno.
- > A Dictionary of Epidemiology, 6th Ed., M. Porta.

Thank you

Acknowledgements

Dr. Pratap Singhasivanon

