Data analysis

Introductory on Field Epidemiology 6 July 2015, Thailand

0

Types of Variables

- Continuous variables:
 - Always numeric
 - Generally calculate measures such as the mean, median and standard deviation
- Categorical variables:
 - Information that can be sorted into categories
 - Often interested in dichotomous or binary (2-level) categorical variables
 - Cannot calculate mean or median but can calculate *risk*

Parametric and nonparametric tests of significance

Parametric test of significance - to estimate at least one population parameter from sample statistics
Assumption: the variable we have measured in the sample is *normally distributed in the population* to which we plan to generalize our findings

Nonparametric test - *distribution free*, no assumption about the distribution of

Summary Table of Statistical Tests

Level of Measurement		Correlation					
	1 Sample	2 Sample		K Sample	K Sample (i.e., >2)		
		Independent	Dependent	Independent	Dependent		
Categorical or Nominal	X2 or bi- nomial	Х2	Macnarmar's X2	X2	Cochran's Q		
Rank or Ordinal		Mann Whitney U	Wilcoxin Matched Pairs Signed Ranks	Kruskal Wallis H	Friendman's ANOVA	Spearman's rho	
Parametric (Interval & Ratio)	z test or t test	t test between groups	t test within groups	1 way ANOVA between groups	1 way ANOVA (within or repeated measure)	Pearson's r	
					(Plonskey	, 2001)	

Parametric Test Procedures

1. Involve Population Parameters (Mean)

 Have Stringent Assumptions (Normality)

3. Examples: Z Test, t Test, χ^2 Test, F test

Standard Normal (Z) Distribution

- There are many Normal distributions depending on μ and σ
- The Standard Normal (Z) distribution is a Normal distribution with mean 0 and standard deviation 1
- Notation: Z~N(0,1)
- If variable X has normal distribution, we standardize a value x_i by subtracting μ and dividing by σ . This is called a z-score.
 - The z-score of a value tells you how many times of σ the value falls far from μ in either a positive or negative direction

$$z = \frac{x - \mu}{\sigma}$$

Standardization (z score): Example

- What is the z score of weight of 68 kg. if weight variable has normal distribution with mean of 70 kg and SD of 2.8 kg?
- $z = (x \mu) / \sigma$
 - = (68 70) / 2.8 = -0.71
- This means that 68 is 0.71 standard deviations *below* the mean of the distribution
- Probabilities of Standard Normal (Z) Distribution have been tabulated (See z-table in your textbooks).
 So we can estimate probability of getting values more or less than a specific value of interest.

Z Distribution is limited

 $\overline{\chi}$

The **Standard Normal (Z) distribution** is a Normal distribution with mean 0 and standard deviation 1

If variable X has normal distribution, we can calculate zscore:

$$z = \frac{x - \mu}{x - \mu}$$

- In real life, we never collect data of all population. μ and σ are unknown.
- But we have sample mean and standard deviation (S)
- Fortunately, there is another type of distribution/model that we can use and S and it is quite similar to Z distribution (X)

Student's t distributions

- Similar to the Standard Normal ("z") distribution but with broader tails
- It is not a single distribution but a family
- Family members identified by sample size minus one (n-1), called "degrees of freedom" (*df*)
- As *df* increases \rightarrow tails get skinnier $\rightarrow t$ become more like $z \rightarrow t$ with ∞df

= Z

Student's t distributions

•Greater the df, the more closely the t distribution matches the z distribution

•Main impact of df is that higher critical values of t are needed to reject H0 with smaller df

	Ta	ble A	.5. Pe	rcentile	s of the	t-Disti	ribution	
	df	90%	95%	97.5%	99%	99.5%	99.9%-	Une-Talled
	1	3.078	6.314	12.706	31.821	63.657	318.309	Percentages
	2	1.886	2.920	4.303	6.965	9.925	22.327	
	3	1.638	2.353	3.183	4.541	5.841	10.215	
	4	1.533	2.132	2.777	3.747	4.604	7.173	
1	5	1.476	2.015	2.571	3.365	4.032	5.893	
	6	1.440	1.943	2.447	3.143	3.708	5.208	
1	7	1.415	1.895	2.365	2.998	3.500	4.785	
	8	1.397	1.860	2.306	2.897	3.355	4.501	
	9	1.383	1.833	2.262	2.822	3.250	4.297	
	10	1.372	1.812	2.228	2.764	3.169	4.144	
	11	1.363	1.796	2.201	2.718	3.106	4.025	
	12	1.356	1.782	2.179	2.681	3.055	3.930	So with 17 df
	13	1.350	1.771	2.160	2.650	3.012	3.852	
	14	1.345	1.761	2.145	2.625	2.977	3.787	•2.5% of scores fall above 2.11
	15	1.341	1.753	2.132	2.603	2.947	3.733	•2.5% fall below -2.11
	16	1.337	1.746	2.120	2.584	2.921	3.686	
	17	1.333	1.740	2.110-	2.55	0.870	1	•±2.11 critical two-tailed t-value for
	10	1.330	1.734	2.101	2.552	2.879	3.011	a = 05
	20	1.328	1.729 1.725	2.093	2.540	2.801	3.380	u = .00
	20 91	1.520 1.202	1.720 1.791	2.080	2.020 9.518	2.040 2.821	3.002 3.507	
	21	1.525 1.321	1.721 1.717	2.080 2.074	2.518 2 508	2.031 2.810	3.527	
	22	1.521 1 310	1.717 1.714	2.074 2.069	2.508 2.500	2.819 2.807	3.005 3.485	With large sample n <i>t</i> -distribution
	$\frac{23}{24}$	1.318	1.714 1 711	2.003 2.064	2.300 2 4 9 2	2.007 2 797	3.467	
	25	1.316	1.708	2.001 2.060	2.485	2.788	3,450	critical values approach z
	$\frac{20}{26}$	1.315	1.706	2.056	2.479	2.779	3.435	•+1.96 is two-tailed value for $\alpha = 0.5$
	27^{-5}	1.314	1.703	2.052	2.473	2.771	3.421	
	28	1.313	1.701	2.048	2.467	2.763	3.408	• <u>+</u> 2.58 is two-tailed value for $\alpha = .01$
	29	1.311	1.699	2.045	2.462	2.756	20	
	30	1.310	1.697	2.042	2.457	2,750	0.385	
	40	1.303	1.684	2.021	2.423	2.705	3.307	
1	80	1.292	1.664	1.990	2.374	2.639	3.195	
- Contraction	∞	1.282	1.645	1.960	2.326	2.576	3.090	

ารมควบคุมโรค

Student's t distributions

- Like z distribution,
 - we can standardize the value of observed sampling mean with expected population mean
- Like z score, • Basic formulasis: $=\frac{\overline{x}-\mu_0}{SE_{\overline{x}}}$
- We call the score "t statistic", and the test "t test"

Type of t Test

1. One-sample *t* test

- Is sample mean equal to a hypothetical value?
- No comparison group.
 - E.g. Is mean height of students from school A equal to 160 cm.?

2. Paired *t* test

0

- Are sample means of two related samples (paired samples) equal?
- E.g. Are mean scores of June course participants equal between pre-test and post- test?

3. Independent (unpaired) *t* test

- Are sample means of two independent samples equal?
- E.g. Are mean scores of students from school A equal to between mean scores of students from school A ?

What Type of Sample?

- 1. Measure vitamin content in loaves of bread and see if the average meets national standards
- 2. Compare vitamin content of loaves immediately after baking versus content in same loaves 3 days later
- 3. Compare vitamin content of bread immediately after baking versus other loaves that have been on shelf for 3 days

Answers:

- 1 = single sample
- 2 = paired samples
- 3 = independent samples

I.One-Sample t Test

A. $H_0: \mu = \mu_0$ vs. $H_a: \mu \neq \mu_0$ (two-sided), or $H_a: \mu < \mu_0$ (left-sided), or $H_a: \mu > \mu_0$ (right-sided)

B. Collect the data and calculate *t*_{stat}

$$t_{\text{stat}} = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$$
 with $df = n - 1$

C. One-sided P-value = AUC in tail beyond t_{stat} Two-sided P-value = twice that

SIDS Example

- Research question: Do Sudden Infant Death Syndrome (SIDS) babies have lower than average birth weights?
- Prior research in non-SIDS population suggests normal mean birth weight around 3300 grams
- Sample SIDS population $\Rightarrow n = 10 \Rightarrow$ determine birth weights \Rightarrow mean = 2890.5, s = 720.0
- Ask: Do data show that SIDs *population* has mean birth weight less than 3300 gms?

A. $H_0: \mu = 3300$ vs. $H_a: \mu \neq 3300$ (two-sided), or $H_a: \mu < 3300$ (one-sided)

$$t_{\text{stat}} = \frac{\overline{x} - \mu_0}{SE_{\overline{x}}} = \frac{2890.5 - 3300}{720/\sqrt{10}} = -1.80$$
$$df = n - 1 = 10 - 1 = 9$$

Β.

C. Convert *t*_{stat} to *P*-value (next series of slides)

P-value from t Table

- Bracket |t_{stat}| between "critical" value landmarks in table C
- One-sided P ≈ upper tail (column heading)
- For example, $t_{stat} = -1.80$ with 9 df

Thus \Rightarrow One-tailed: 0.05 < P < 0.10

Two-tailed: 0.10 < *P* < 0.20

Converting t_{stat} to P-value via STATA

ttesti 10 2890.5 720 3300

One-sample t test

Obs Mean Std. Err. Std. Dev. [95% Conf. Interva x 10 2890.5 227.684 720 2375.443 3405.5 mean = mean(x) t = -1.79 degrees of freedom = -1.79 Ho: mean = 3300 Ha: mean != 3300 Ha: mean > 330							
x 10 2890.5 227.684 720 2375.443 3405.5 mean = mean(x) t = -1.79 Ho: mean = 3300 degrees of freedom = Ha: mean < 3300 Ha: mean != 3300 Ha: mean > 3300		Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
mean = mean(x) $t = -1.79$ Ho: mean = 3300degrees of freedom =Ha: mean < 3300Ha: mean != 3300Ha: mean > 3300Ha: mean > 3300	x	10	2890.5	227.684	720	2375.443	3405.557
Ha: mean < 3300 Ha: mean != 3300 Ha: mean > 330	mean = Ho: mean =	= mean(x) = 3300			degrees	t of freedom	= -1.7985 = 9
$\begin{array}{ccc} \Pr(T < t) = 0.0528 & \Pr(T > t) = 0.1056 & \Pr(T > t) = 0.943 \\ \hline One-sided P-value & Two-sided P-value & One-sided P-value \\ \end{array}$	Ha: mea Pr(T < t) One	an < 3300) = 0.0528 -sided P-value	H Pr(la: mean $!= 33$ T $ > t $) = 0 Two-side	00 .1056 ed P-value	Ha: me Pr(T > t One-si	an > 3300) = 0.9472 ded P-value

2. Paired t Test

- Two samples in which each data point in one sample uniquely paired to a data point in the other sample
- Examples
 - Sequential samples within individuals
 - "Pre-test/post-test"
 - Cross-over trials
 - Pair-matching

"Magic Egg" Example

- Does magic egg reduce LDL cholesterol (mmol/L)?
- Cross-over design: Half subjects start on regular egg, half on magic egg
- Two weeks on diet $1 \Rightarrow$ LDL cholesterol
- Washout period
- Switch to other diet
- Two weeks on diet $2 \Rightarrow LDL$ cholesterol

Egg dataset

Subject	RE	ME
1	4.61	3.84
2	6.42	5.57
3	5.40	5.85
4	4.54	4.80
5	3.98	3.68
6	3.82	2.96
7	5.01	4.41
8	4.34	3.72
9	3.80	3.49
10	4.56	3.84
11	5.35	5.26
12	3.89	3.73

Within Pair Difference "DELTA"

• Let delta = re - me

First three observations in ME data:

ID	RE	ME	DELTA
1	4.61	3.84	0.77
2	6.42	5.57	0.85
3	5.40	5.85	-0.45
etc.			

Summary Stats for DELTA ("ME")

n = 12 $\bar{x}_d = 0.3808$ $s_d = 0.4335$

subscript _d denote statistics for DELTA

is optional

Paired t Test

Similar to one-sample *t* test with μ_0 set to 0, representing "no mean difference" $H_0: \mu = 0$

$$t_{\text{stat}} = \frac{\overline{x}_d - \mu_0}{s_d / \sqrt{n}}$$
$$df = n - 1$$

Paired t test:"ME"

A. $H_0: \mu_d = 0$ vs. $H_a: \mu_d \neq 0$ B. Test statistic

$$t_{\text{stat}} = \frac{\overline{x}_d - \mu_0}{s/\sqrt{n}} = \frac{0.38083 - 0}{.4335/\sqrt{12}} = 3.043$$
$$df = n - 1 = 12 - 1 = 11$$

C. P = 0.011 \Rightarrow significant evidence against H_0

STATA Output: "ME"

ttest re == me

Paired t test

variable	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
re me	12 12	4.605833 4.2625	.2316916 .2626039	.8026033 .9096865	4.095884 3.684513	5.115783 4.840487
diff	12	. 3433333	.1200589	.4158963	.0790854	.6075812
mean Ho: mean	(diff) = me (diff) = 0	an(re - me)		degrees	t : of freedom :	= 2.8597 = 11
Ha: mean Pr(T < t)	(diff) < 0) = 0.9922	Ha Pr (: mean(diff) T > t) =	!= 0 0.0155	Ha: mean Pr(T > t	(diff) > 0) = 0.0078

3. Independent Samples

EX. Do fasting cholesterol levels (mg/dl) differ in Type A and Type B personality men?

Group 1 (Type A personality): 233, 291, 312, 250, 246, 197, 268, 224, 239, 239, 254, 276, 234, 181, 248, 252, 202, 218, 212, 325

Group 2 (Type B personality): 344, 185, 263, 246, 224, 212, 188, 250, 148, 169, 226, 175, 242, 252, 153, 183, 137, 202, 194, 213

Summary Statistics

Group	n	mean	std dev
1	20	245.05	36.64
2	20	210.30	48.34

Notation for Inference about Mean Difference

Parameters (population)

Group 1	N_1	μ_1	σ_1
Group 2	N_2	μ_2	σ_2

Statistics (sample)

Group 1	n_1	\overline{x}_1	<i>s</i> ₁
Group 2	n_2	\overline{x}_2	<i>s</i> ₂

 $\overline{x}_1 - \overline{x}_2$ is the point estimator of $\mu_1 - \mu_2$

How precise does $\overline{x}_1 - \overline{x}_2$ estimate $\mu_1 - \mu_2$?

Standard error of the mean difference

$$SE_{\overline{x}_1 - \overline{x}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

This estimate of the standard error does *not* assume groups have equal variance

Two ways to estimate **degrees of freedom**:

- $df_{\text{Welch-Satterthwaite}} = \text{formula [use computer]}$
- $df_{\text{conservative}} = \text{the smaller of } (n_1 1) \text{ or } (n_2 1)$

For the illustrative data:

$$SE_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{36.638^2}{20} + \frac{48.340^2}{20}} = 13.563$$

$$df_{Welsch-Satterthwaite} = 35.4 \text{ (via STATA)}$$

$$df_{conservative} = \text{smaller of } (n_1 - 1) \text{ or } (n_2 - 1)$$

Hypothesis Test $H_0: \mu_1 = \mu_2$ VS. $H_a: \mu_1 \neq \mu_2$ (two-sided) or $H_a: \mu_1 > \mu_2$ (right-sided) or $H_a: \mu_1 < \mu_2$ (left-sided) Test statistic $(\overline{\mu} - \overline{\mu})$

$$t_{\text{stat}} = \frac{(\bar{x}_1 - \bar{x}_2)}{SE_{\bar{x}_1 - \bar{x}_2}} \text{ where } SE_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$
$$df_{\text{Welch}} \text{ or } df_{\text{conserv}} \text{ (see previous slide)}$$

C. One-sided $P = Pr(T \ge |t_{stat}|)$ Double one-sided P for two-sided test

Hypothesis Test – Example

- B.
- A. $H_0: \mu_1 = \mu_2 \text{ vs. } H_a: \mu_1 \neq \mu_2$ **Prior** calculations: $xbar_1 - xbar_2 = 245.05 - 210.30 = 34.75$ SE = 13.563 with $df_{conserv} = 19$

$$t_{\text{stat}} = \frac{(\bar{x}_1 - \bar{x}_2)}{SE_{\bar{x}_1 - \bar{x}_2}} = \frac{34.75}{13.563} = 2.56 \text{ with } 19 \, df$$

- Using table C, the one-sided P is between .01 C. and .005 and the two-sided P between .02 and .01
 - \Rightarrow "Significant" evidence against H_0

STATA Output

ttesti 20 245.05 36.64 20 210.30 48.34, unequal

Two-sample t test with unequal variances

	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
x y	20 20	245.05 210.3	8.192953 10.80915	36.64 48.34	227.902 187.6762	262.198 232.9238
combined	40	227 . 675	7.249283	45.84849	213.0119	242.3381
diff		34.75	13.56327		7.226597	62.2734
diff = Ho: diff =	= mean(x) - = 0	mean(y)	Satterthwai	te's degrees	t : of freedom :	2.5621 35.4138
Ha: di Pr(T < t)	iff < 0) = 0.9926	Pr()	Ha: diff != T > t) =	0.0148	Ha: d Pr(T > t)	iff > 0) = 0.0074

Comparison of Cl Formulas (point estimate) $\pm (t^*)(SE)$

Type of	point	<i>df</i> for <i>t</i> *	SE
sample	estimate		
single	\overline{x}	<i>n</i> – 1	$\frac{s}{\sqrt{n}}$
paired	\overline{X}_d	<i>n</i> – 1	$\frac{s_d}{\sqrt{n}}$
in dependent	$\overline{r} - \overline{r}$	smaller of	$s_1^2 s_2^2$
	$\lambda_1 - \lambda_2$	<i>n</i> ₁ –1 or <i>n</i> ₂ –1	$\sqrt{n_1} + \overline{n_2}$

Conditions for Inference

*t p*rocedures require these conditions:

Valid information (no bias)

 Normal population or large sample (central limit theorem)

Quiz

- Open Eclair9 data in STATA,
- In 11-to-19-year study population?
 - Is the average of them = 15 years?
 - Does the average age of the cases differ from • that of the controls?

Equal Variance t Procedure (Optional)

- Also called pooled variance t procedure
- Not as robust as prior method, but...
- Historically important
- Calculated by software programs
- Leads to advanced ANOVA techniques

Pooled variance procedure

We start by calculating this pooled estimate of variance

$$s_{pooled}^{2} = \frac{(df_{1})(s_{1}^{2}) + (df_{2})(s_{2}^{2})}{df_{1} + df_{2}}$$
where
$$s_{i}^{2}$$
 is the variance in group *i* and
$$df_{i} = n_{i} - 1$$

• The pooled variance is used to calculate this standard error estimate:

$$SE_{\overline{x}_1 - \overline{x}_2} = \sqrt{s_{pooled}^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

Confidence Interval

$$(\overline{x}_1 - \overline{x}_2) \pm (t_{df, 1 - \frac{\alpha}{2}})(SE_{\overline{x}_1 - \overline{x}_2})$$

Test statistic

$$t_{\text{stat}} = \frac{(\bar{x}_1 - \bar{x}_2)}{SE_{\bar{x}_1 - \bar{x}_2}}$$

All with $df = df_1 + df_2 = (n_1 - 1) + (n_2 - 1)$

Pooled Variance t Confidence Interval

Data	Group	n _i	s _i	xbar _i
	1	20	36.64	245.05
	2	20	48.34	210.30

$$SE_{\overline{x}_1 - \overline{x}_2} = \sqrt{1839.623 \left(\frac{1}{20} + \frac{1}{20}\right)} = 13.56$$
$$df = (20 - 1) + (20 - 1) = 38$$

95% CI for
$$\mu_1 - \mu_2 = (\bar{x}_1 - \bar{x}_2) \pm (t_{38,.975})(SE_{\bar{x}_1 - \bar{x}_2})$$

= (245.05 - 210.30) ± (2.02)(13.56)
= 34.75 ± 27.39 = (7.36, 62.14)

Pooled Variance t Test

Data:			
Group	n _i	S _i	xbar _i
1	20	36.64	245.05
2	20	48.34	210.30

$$SE_{\overline{x}_1 - \overline{x}_2} = \sqrt{1839.623 \left(\frac{1}{20} + \frac{1}{20}\right)} = 13.56$$
$$df = (20 - 1) + (20 - 1) = 38$$

$$H_{0}: \mu_{1} = \mu_{2}$$

$$t_{\text{stat}} = \frac{\overline{x_{1}} - \overline{x_{2}}}{SE_{\overline{x_{1}} - \overline{x_{2}}}} = \frac{34.75}{13.56} = 2.56; df = 38$$

$$P = 0.015$$

Nonparametric Test Procedures

1. Do Not Involve Population Parameters

Example: Probability Distributions, Independence

2. Data Measured on Any Scale (Ratio or Interval, Ordinal or Nominal)

3. Example: Wilcoxon Rank Sum Test

Advantages of Nonparametric Tests

1. Used With All **Scales** 2. Easier to Compute 3. Make Fewer Assumptions Need Not 4. Involve Population **Parameters**

Disadvantages of Nonparametric Tests

May Waste Information Parametric model more efficient if data Permit

2. Difficult to Compute by

hand for Large Samples

3. Tables Not Widely Available