Correlation and regression

Yongjua Laosiritaworn

Introductory on Field Epidemiology 6 July 2015, Thailand

- Quantitative Exposure variable (X)
- Quantitative Disease variable (Y)
- Objective: To quantify the *linear* relationship between X and Y

Table 14.1 Synonyms for	<i>explanatory variable</i> and
response variable.	

Explanatory Variable	\rightarrow	Response Variable
X independent variable factor treatment exposure	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	Y dependent variable outcome response disease

Illustrative data (Doll, 1955)

per capita cigarette consumption (X)		lung cancer mortality per 100,000 in 1950 (Y)
COUNTRY	cig1930	LUNGCA
USA	1300	20
Great Britain	1100	46
Finland	1100	35
Switzerland	510	25
Canada	500	15
Holland	490	24
Australia	480	18
Denmark	380	17
Sweden	300	11
Norway	250	9
Iceland	230	6

n = 11

Scatter plot

n = 11

Doll, 1955

- Form: linear
- Direction: positive association
- Outlier: no clear outliers
- Strength: difficult to determine by eye

The **eye** is *not* a good judge of strength

Identical data sets on differently scaled axes

This relation appears to be weak

This relation appears strong

The different appearances in strength is an artifact of the axis scaling

Correlation coefficient, *r*

- r ≡ Pearson's product-moment correlation coefficient
- Measures degree to which X and Y "go together"
- Always between -1 and 1
- $r \approx 0 \Rightarrow no \ correlation$
- $r > 0 \Rightarrow$ positive correlation
- $r < 0 \Rightarrow$ negative correlation
- Closer r is to 1 or -1, the stronger the correlation

Karl Pearson 1857 - 1936

Interpretation of r

- Direction of association: positive, negative, ~0
- Strength of association
 - close to 1 or $-1 \Rightarrow$ "strong"
 - − close to $0 \Rightarrow$ "weak"
 - guidelines
 - if $|r| \ge .7 \Rightarrow$ say "strong"
 - if $|r| \le .3 \Rightarrow$ say "weak"

r by hand

$$r = \frac{1}{n-1} \sum z_X z_Y$$

where $z_X = \frac{x_i - \bar{x}}{s_X}$ and $z_Y = \frac{y_i - \bar{y}}{s_Y}$.

- z quantify distance above or below mean in standard deviations units.
- When z scores track in same directions ⇒ products are positive
- When z scores track in opposite directions ⇒ products are negative

r by hand

Table 14.3 Calculation of correlation coefficient r, illustrative data.

$\bar{x} = \frac{6640}{11} = 603.6364$							
$\overline{y} = \frac{2}{3}$	$\frac{226}{11} = 20.54545$						
i	Country	x	$z_x = \frac{x_i - \bar{x}}{s_x}$	Ŷ	$z_y = rac{y_i - \overline{y}}{s_y}$	$z_{\chi} \cdot z_{\gamma}$	
1	US	1300	1.840	20	-0.047	- 0.086	
2	Great Britain	1100	1.312	46	2.171	2.847	
3	Finland	1100	1.312	35	1.233	1.617	
4	Switzerland	510	-0.247	25	0.380	-0.094	
5	Canada	500	-0.274	15	-0.473	0.130	
6	Holland	490	-0.300	24	0.295	-0.088	
7	Australia	480	-0.327	18	-0.217	0.071	
8	Denmark	380	-0.591	17	-0.302	0.179	
9	Sweden	300	-0.802	11	-0.814	0.653	
10	Norway	250	-0.934	9	-0.985	0.920	
11	Iceland	230	- 0.987	6	-1.241	1.225	
	$Sums \to$	6640	0	226	0	7.373	
	1 5 1						

Coefficient of determination (r²)

- Square the correlation coefficient ⇒ r² = proportion of variance in Y mathematically explained by X

 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
 Mathematically explained by X
- Illustrative data: r² = 0.737² = 0.54 ⇒ 54% of variance in lung cancer mortality is mathematically explained per capita smoking rates

11

Cautions

- Outliers
- Non-linear relationship
- Confounding (correlation is not causation)
- randomness

Non-linear relaitonship

Confounding

William Farr showed this strong negative correlation between cholera mortality and elevation above sea level in defense of miasma theory

However, he failed to account for the fact that people who lived at low elevations were more likely to drink from contaminated water sources (... confounding)

Randomness

Selection of specific data points would result in a false correlation

Need to do hypothesis testing!

Example of questions

•General concept

- •Linear equation
- Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Estimate association between outcome and covariates

 How cardiovascular disease (CVD) associate with smoking [and body mass index (BMI), age, etc.]

> Control of confounder(s)

 How cardiovascular disease (CVD) associate with smoking after adjust for BMI, age, etc.

Risk prediction

 How to predict probability of getting CVD given information of BMI, age, etc.

	Result f	rom b	oivariate	e analysis
 General concept Linear equation Linear regression Simple regress 	Outcom	e is CVD	, exposure	e is smoker
 Multiple regress Model testing Epilnfo & STATA Logistic regression 		CVD n=100	No CVD n=100	Odds ratio (95% CI)
 Introduction Coefficients Simple regress Multiple regress 	Smoker	76	49	3.30 (1.80, 6.03)
 Model testing Model building Epilnfo & STATA 	Alcohol drinker	62	48	1.77 (1.01, 3.10)
		Confo	under ?	

Correlation direction and strength

Sequence of analysis

General concept

- Linear equation
- Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

> Descriptive analysis

- Know your dataset
- > Bivariate analysis
 - Identify associations

Stratified analysis

Identify confounders and effect modifiers

> Multivariable analysis

Control for confounders and manage effect modifiers

Regression

General concept

- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Regression is the study of dependence between an outcome variable (y) - the dependent variable, and one or several covariates (x) independent variables

- > Objective of using regression
 - Estimate association between outcome and covariates
 - Control of confounder(s)
 - Risk prediction

	Result from bivariate analysis				22
 General concept Linear equation Linear regression Simple regress 	Outcom	ne is CVD	, exposure i	s smoker	
 Multiple regress Model testing Epilnfo & STATA Logistic regression 		CVD n=100	No CVD n=100	p - value	
 Introduction Coefficients Simple regress 	Mean MBI (sd)	25.6(1.5)	21.6(1.6)	< 0.001	
 Multiple regress Model testing Model building Epilnfo & STATA 	Mean age (sd)	63.0(7.2)	56.1(7.1)	< 0.001	
		Confou	under ?		

Stratify analysis

Regression

General concept

- Linear equationLinear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

It is a representation/modeling of the dependence between one or several variables

> Type of models

- Linear regression
- Logistic regression
- Cox regression
- Poisson regression
- Loglinear regression

Choices of the model depend on objectives, study design and outcome variables

Review of linear equation

x and y relationship example1

x and y relationship example2

x and y relationship example3

$$y = 2x + 1$$

General form of linear equation

- •General concept
- Linear equation
- Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

y = **a** + **bx**

- x is independent variable
- y is dependent variable
- > a is a constant or y-intercept
 - The value of y when x = 0
- b is a slope
 - Amount by which y changes when x changes by one unit

Exercise: interpretation of slope

- General concept
- Linear equation
- Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

≻ y = x

- − x increase 1 \rightarrow y
- > y = 2x
 - − x increase 1 \rightarrow y
- > y = 2x + 1
 - − x increase 1 \rightarrow y
- > y = -x + 1
 - − x increase 1 \rightarrow y
- ≻ y = -2x 1
 - x increase 1 \rightarrow y

Linear regression

Linear regression

General concept
 Linear equation

 \triangleright

- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

- Given an independent variable (x) and a dependent continuous variable (y), we computed *r* as a measure of linear relationship
- We want to be able to use our knowledge of this relationship to explain our data, or to predict new data.
 - This suggests linear regression (LR), a method for representing the dependent variable (outcome) as a linear function of the independent variables (covariates)
 - Outcome is continuous variable
 - Covariate can be either continuous or categorical variable

Linear regression

- General concept
- Linear equationLinear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Simple linear regression (SLR)

- A single covariate

> Multiple linear regression (MLR)

Two or more covariate (with or without interactions)

•General concept

- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

A straight line can be described by an equation of the form

Mathematical properties of a straight line

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{X}$$

- $-\beta_0$ and β_1 are coefficients of the model
- β_0 is called the y-intercept of the line: the value of y
 - when x = 0
- β_1 is called the slope: the amount of change in y for each 1-unit change in x

Example data with 15 epidemiologists

•General concept	ID	x (Year of working)	y (Number of investigation)
Linear equation Linear regression	1	3	15
 Simple regress 	2	6	2
- Multiple regress	3	3	1
 Model testing 	4	8	16
- Epilnfo & STATA	5	9	10
- Introduction	6	6	5
- Coefficients	7	16	37
 Simple regress 	8	10	40
 Multiple regress 	9	2	8
 Model testing 	10	5	21
 – Model building – Epilnfo & STATA 	11	5	29
	12	6	20
	13	7	9
	14	11	26
	15	18	42

Approach of SLR

General conceptLinear equationLinear regression

- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introductior
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

The following graph is a scatter plot of the example data with 15 epidemiologists

We want to find a line that adequately represents the relationship between X (year of working) and Y (Number of outbreak investigation)

General conceptLinear equationLinear regression

- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Algebraic approach

- The best fitting line is the one with the minimum sum of squared errors
- The way to find the best-fitting line to minimize the sum of squared errors is called *least-squares method*
 - Let \hat{Y}_i denote the estimated outcome at X_i based on the fitted regression line, $\hat{Y}_i = \beta_0 + \beta_1 X_i$
 - eta_0 and eta_1 are the intercept and the slope of the fitted line
 - The error, or residual, is $e_i = Y_i \hat{Y}_i = Y_i (\hat{\beta}_0 + \hat{\beta}_1 X_i)$
 - The sum of the squares of all such errors is

$$SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)^2$$

Algebraic approach

General conceptLinear equationLinear regression

- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

The least-squares estimates

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2} = \frac{SP_{XY}}{SS_X}$$

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

Approach of SLR

	and the second se	And the second se					
	ID	Х	у	$(X_i - \overline{X})$	$(Y_i - \overline{Y})$	$(X_i - \overline{X})(Y_i - \overline{Y})$	$(X_i - \overline{X})^2$
General concept	1	3	15	-4.67	-3.73	17.42	21.78
Linear equation	2	6	2	-1.67	-16.73	27.89	2.78
 Simple regress 	3	3	1	-4.67	-17.73	82.76	21.78
 Multiple regress 	4	8	16	0.33	-2.73	-0.91	0.11
 Model testing 	5	9	10	1.33	-8.73	-11.64	1.78
- Epilnfo & STATA	6	6	5	-1.67	-13.73	22.89	2.78
- Introduction	7	16	37	8.33	18.27	152.22	69.44
- Coefficients	8	10	40	2.33	21.27	49.62	5.44
- Simple regress	9	2	8	-5.67	-10.73	60.82	32.11
 Multiple regress 	10	5	21	-2.67	2.27	-6.04	7.11
 Model testing 	11	5	29	-2.67	10.27	-27.38	7.11
 – Model building – Epilnfo & STATA 	12	6	20	-1.67	1.27	-2.11	2.78
	13	7	9	-0.67	-9.73	6.49	0.44
	14	11	26	3.33	7.27	24.22	11.11
	15	18	42	10.33	23.27	240.42	106.78
	Total	115	281			636.67	293.33

 $\overline{X} = 115/15 = 7.67$ $\overline{Y} = 281/15 = 18.73$

General conceptLinear equationLinear regression

- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Algebraic approach

 $SP_{XY} = 636.67$

 $SS_{X} = 293.33$

$$\hat{\beta}_1 = \frac{SP_{XY}}{SS_X} = \frac{636.67}{293.33} = 2.17$$

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X} = 18.73 - (2.17)(7.67) = 2.09$$

 $Y = 2.17 + 2.09 X$

Approach of SLR

General conceptLinear equationLinear regression

- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Х

Interpretation of coefficients

General conceptLinear equationLinear regression

- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Y = 2.17 + 2.09 X

- β₀: for epidemiologist with no working experience (X=0), average number of outbreak investigation is 2.17
 - Less meaningful for continuous variable of X, unless center it at some meaningful value
- β₁: for additional one year of working experience, average number of outbreak investigation increase by 2.09

SLR for dichotomous variable

	ID	x1 (training)	y (Number of investigation)
General concept	1	1	15
_inear regression	2	0	2
- Simple regress	3	0	1
- Multiple regress	4	0	<u>-</u> 16
 Model testing 	E I	1	10
- Epilnfo & STATA	5	T	10
_ogistic regression	6	0	5
- Introduction	7	1	37
- Coefficients	8	1	40
 Simple regress 	9	1	8
 Multiple regress 			
 Model testing 	10	T	21
- Model building	11	1	29
- Epilnfo & STATA	12	0	20
	13	0	9
	14	0	26
	15	1	42

x1 : 0 = no training, 1 = ever attend training

SLR for dichotomous variable

Xı

General conceptLinear equationLinear regression

- Simple regress

SLR for dichotomous variable

Xı

General conceptLinear equationLinear regression

- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Interpretation of coefficients

$$Y = 11.29 + 13.96X$$

- β₀: for epidemiologist with no training(X1=0), average number of outbreak investigation is 11.29
- β₁: for epidemiologist who ever attend training, average number of outbreak investigation increase by 13.96 (or average number of outbreak investigation is 25.25)

Multiple linear regression (MLR)

in the second	ID	X (Year of working)	X1 (training)	y (Number of investigation)
General concept	1	3	1	15
Linear regression	2	6	0	2
- Simple regress	3	3	0	1
 Multiple regress 	4	8	0	16
- Model testing	5	9	1	10
Logistic regression	6	6	0	5
- Introduction	7	16	1	37
- Coefficients	8	10	1	40
- Simple regress	9	2	1	8
 Multiple regress Model testing 	10	5	1	21
 Model building 	11	5	1	29
- Epilnfo & STATA	12	6	0	20
	13	7	0	9
	14	11	0	26
	15	18	1	42

x1 : 0 = no training, 1 = ever attend training

General conceptLinear equationLinear regression

- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Multiple linear regression (MLR)

Also used *least-squares method* to estimate coefficients and draw best fitting line

General form

$$\hat{Y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_i X_i$$

- $-\beta_0$ is the value of y when all $x_i = 0$
- β_i is amount of change in y for each 1-unit change in x_i adjusted for other covariates

General concept
 Linear equation

- Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Interpretation of coefficients

Y = -1.68 + 1.93X + 10.51X1

- β₀: for epidemiologist with no working experience (X=0) and no training(X1=0), average number of outbreak investigation is -1.68
 - Less meaningful if there are continuous variables of X in the model, unless center it at some meaningful value
- β₁: for additional one year of working experience, average number of outbreak investigation increase by 1.93 after adjusted for ever attend training
- β₂: for epidemiologist who ever attend training, average number of outbreak investigation increase by 10.51 after adjusted for working experience

- General concept
 Linear equation
- Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Coefficient of Determination (r² or R²)

- A measure of the impact that X covariate(s) has in explaining the variation of Y
- ► $0 \le r^2 \le 1$
 - 1 : a perfect prediction
 - 0: absolutely no association
- The higher the r² value, the more the variation in Y is able to be predicted by X. The higher the r², the smaller the errors of prediction
- Adjusted r² : a modification of r² that adjusts for the number of covariates in a model

General conceptLinear equationLinear regression

- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Interpretation of r²

$$Y = -1.68 + 1.93X + 10.51X1 \qquad r^2 = 0.69$$

> 69% of the variability of number of outbreak investigation is explained by number of year in working experience and ever attend training

Hypothesis testing of the model

- General conceptLinear equation
- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

p-value or critical value approach

> Two parts of testing

- Significant of overall model (do all covariates together can predict the outcome?)
 - Using ANOVA approach (overall F-test)
- Significant of each β_i (adjusted for other covariates)
 - Using either partial F-test or partial t-test

ANOVA table

concept quation gression	Source	Sum of square (SS)	df	Mean square (MS)	F statistics
regress	Regression	SSR	k	MSR	MSR/MSE
e regress testing	Residual (Error)	SSE	n-k-1	MSE	
& STATA	Total	SST	n-1		

 $SSR = \sum (\hat{Y}_i - \overline{Y})^2$ $SSR = \sum (Y_i - \hat{Y}_i)^2$ $SST = \sum (Y_i - \overline{Y})^2 = SSR + SSE \longrightarrow SS_y$

- > k : number of covariate in the model
- n : number of observation in the model
- MSR = SSR/k

•General

Model

- > MSE = SSE/(n-k-1)
 - $r^2 = SSR / SST$

Regression line and error

Note: sum of square (SS) is computed from all y_i , this figure just shows only 1 data point of y at (10, 40) as an example

Overall F test

General concept
 Linear equation

- Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

The ANOVA provides a test for

 $\mathsf{H}_0:\beta_1=\beta_1=\ldots=\beta_i=0$

> Test statistics

$$F_{k,n-k-1} = \frac{MSR}{MSE}$$

The decision rule is:

Reject H₀ if F > F<sub>(1-
$$\alpha$$
, k, n - k - 1)</sub> or p-value < α

Interpretation: if reject H₀

There was a significant prediction of outcome by covariates taken together (at least one covariate is significant)

partial t test

- General conceptLinear equation
- Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

It provides a test for

 H_0 : $\beta_{i. \text{ given other covariates in the model}} = 0$

> Test statistics

$$t_{n-k-1} = \frac{\beta_i}{SE_{\beta_i}}$$

- The decision rule is:
 - Reject H₀ if t > $t_{(1-\alpha/2, n-k-1)}$ or p-value < α
- Interpretation: if reject H₀
 - There was a significant prediction of outcome by x_i adjusted for other covariates in the model

partial F test

General concept
Linear equation
Linear regression

- Cimple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Extra sum of squares

- We refer to $SSR_{x2|x1}$ as the EXTRA SUM OF SQUARES due to including X2 in the model after X1 is already there
- This calculation is done by subtraction, by comparing the SSR from two models, one referred to as the "FULL MODEL" and the other as the "REDUCED MODEL"

$$\underbrace{SSR_{X^*|X_1...X_p}}_{\text{Extra SS}} = \underbrace{SSR_{X_1...X_p,X}}_{\text{Full model SS}} - \underbrace{SSR_{X_1...X_p}}_{\text{Reduced model SS}}$$

We use this extra SSR to calculate a partial F statistic for contribution of that variable in the order we designated

partial F test

It provides a test for \succ

 H_0 : $\beta_{i. \text{ given other covariates in the model}} = 0$

Test statistics

 \succ

 $SSR_{Full} - SSR_{Reduced}$ $k_1 - k_2$ $F_{k_1-k_2,n-k_1-1} = ------$ SSR_{Full} $n - k_1 - 1$

The decision rule is:

Reject H₀ if
$$F > F_{(1-\alpha,k_1-k_2,n-k_1-1)}$$
 or p-value < α

Interpretation: if reject H_0 \succ

There was a significant prediction of outcome by x_i adjusted for other covariates in the model

58

 General concept Linear equation

- Linear regression

- Model testing

- •General concept •Linear equation
- •Linear regression
- Simple regress
- Multiple regress

Analysis

🗁 Analysis Commands 🗁 Data

> 🦻 Variables Define **Define Group** Undefine Assign Recode Display P Select/If Select **Cancel Select** If Sort **Cancel Sort** A Statistics List Frequencies Tables Match Means Summarize Graph Map Advanced Statistics Linear Regression Kaplan-Meier Survival Cox Proportional Hazards **Complex Sample Frequencies** Complex Sample Tables **Complex Sample Means**

Ca Outout

Help

Read (Import) Relate Write (Export) Merge Delete File/Table Delete Records Undelete Records

- Model testing
- Epilnfo & STATA
- Logistic regression
- Introductio
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Example command in Epilnfo

REGRESS y = x

- - X

Exit

Ou <u>t</u> come Variable y	• Other	r <u>V</u> ariables	[n	teraction Terms	
Weight Con <u>f</u> idence Limits	× x1		\$		
Output to Table					
<u>no intercept</u>	()=M	ake Dummy Vari	ables		
				Save Only	OK

•General concept

Example output in Epilnfo

> SLR

Linear equation D:\??????\Course\Introduction to logi	stic (Monday)\OUT22.htm
Linear regression Simple regress Previous Next Last	Image: Weight of the second
 Multiple regress Model testing 	
Epilnfo & STATA Logistic regression Introduction	
Coefficients Simple regress	Std Freer E tost P Value
 Multiple regress Model testing Model building Constant 2.093 	0.561 14.9567 0.002238 4.967 0.1776 0.680909 F test
- Epilnfo & STATA Correlation Coefficient: r^2	= 0.53
Source df Sum of Squ	ares Mean Square F-statistic
Regression 1 138 Residuals 13 120	I.856 I381.856 I4.957 F test
Total 14 2582	2.933

- General concept •Linear equation
- •Linear regression

- Epilnfo & STATA

Example command in Epilnfo

> MLR

Analysis

🦳 Analysis Commands 🥟 Data

> > Variables Define **Define Group** Undefine Assign Recode Display P Select/If Select **Cancel Select** If Sort **Cancel Sort** A Statistics List Frequencies Tables Match Means Summarize Graph Map Advanced Statistics Linear Regression Kaplan-Meier Survival Cox Proportional Hazards

Complex Sample Tables **Complex Sample Means**

Help

C> Output

REGRESS y = x x1

- - X

Exit					
sis Commands					
ita	REGRESS				
Read (Import)					
Relate					
Write (Export)	Outcome Variable	Other	Variables	Interaction Terms	
Merge	ourcome variable		Tanapico		
Delete File/Table	y y	-		▼	
Delete Records	1.				
Undelete Records		ID			
riables		×1		N	
Define		~1			
Define Group		V			
Undefine	Weight	^			
Assign	=				
Recode					
Display	Confidence Limite				
lect/lf	Con <u>i</u> idence Linnts				
Select		T			
Cancel Select					
If	Output to Table				
Sort					
Cancel Sort					
atistics					
List	No Intercent				
Frequencies	i increept				
Tables		()=Ma	ke Dummy Variable	S	
Match					
Means					
Summarize				Save Only	OK
Graph				<u>s</u> ave only	<u></u>
Мар				1	
vanced Statistics			Clear	Help	Cancel
Linear Regression		_			
Logistic Regression **					
Capitan-méter Survival					
Comportional Hazards					
Complex Sample Frequencies					

Example output in Epilnfo

> MLR

•General concept •Linear equation

- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introductio
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Example command & output in STATA

reg y x

Stata Results							83
.regyx							^
Source	SS	df	MS		Number of obs	= 15	
Model Residual	1381.85606 1201.07727	1 1381 13 92.3	.85606 905594		Prob > F R-squared	= 0.0019 = 0.5350	=
Total	2582.93333	14 184.	495238		Root MSE	= 9.612	
У	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
x _cons	2.170455 2.093182	.5612199 4.96714	3.87 0.42	0.002 0.680	.9580126 -8.637672	3.382897 12.82404	
							-
			Partial			Overall	
			t test			F test	

General conceptLinear equation

- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introductio
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Example command & output in STATA

> MLR

reg y x x1

💷 Stata Results						٤	3
.regy x x1							^
Source	55	df	MS		Number of obs	= 15	
Model Residual	1777.8978 805.035533	2 88 12 67.0	8.9489 862944		Prob > F R-squared	= 0.0009 = 0.6883 = 0.6264	
Total	2582.93333	14 184.	495238		Root MSE	= 8.1906	
У	Coef.	Std. Err.	t	P> t	[95% conf.	Interval]	_
x x1 _cons	1.931472 10.51523 -1.682741	.4882394 4.32778 4.508904	3.96 2.43 -0.37	0.002 0.032 0.716	.8676898 1.085807 -11.5068	2.995254 19.94465 8.141316	•
			Partial t test			Overall F test	

Logistic regression

Introduction

General conceptLinear equation

- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Dichotomous outcome is very common situation in biology and epidemiology

- Sick, not sick
- Dead, alive
- Cure, no cure

What are problems if we use linear regression with dichotomous outcome?

- For example
 - Outcome is cardiovascular disease (CVD):
 0 = Absent, 1= Present
 - Exposure is body mass index (BMI)

Introduction

General conceptLinear equation

- Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

A broad class of regression models, collectively known as the generalized linear model, has been developed to address multiple regression with a variety of dependent variable like dichotomies and counts

Logistic regression is one generalized linear model for categorical outcome variables

Logistic regression allows one to predict a dichotomous (or categorical) outcome from a set of variables that may be continuous, discrete (or categorical), dichotomous, or a mix.

BMI and CVD status of 200 subject

and a start of the	id	bmi	cvd	id	bmi	cvd	id	bmi	cvd	id	bmi	cvd	id	bmi	cvd	id	bmi	cvd	id	bmi	cvd	id	bmi	cvd
General concept	1	20.6	0	26	23.1	0	51	23.3	0	76	21.5	0	101	22.1	1	126	19.6	0	151	23.8	0	176	25.4	1
Linear equation	2	24.4	1	27	27.6	1	52	21.0	0	77	25.2	1	102	24.4	1	127	22.8	0	152	23.6	0	177	26.1	1
Linear regression	3	20.4	0	28	21.3	0	53	22.0	0	78	23.0	1	103	22.8	0	128	19.2	0	153	24.0	1	178	25.4	1
- Simple regress	4	20.6	0	29	25.2	1	54	26.9	1	79	24.5	1	104	20.3	0	129	29.1	1	154	23.3	1	179	21.4	0
– Multiple regress	5	20.7	0	30	28.4	1	55	20.1	0	80	20.3	0	105	25.3	1	130	23.5	1	155	26.5	1	180	27.8	1
Multiple regress	6	21.5	0	31	19.2	0	56	21.2	0	81	25.5	1	106	26.7	1	131	22.9	0	156	24.2	1	181	26.4	1
- Model testing	7	23.5	0	32	22.5	0	57	25.4	1	82	24.0	0	107	27.6	1	132	19.4	0	157	23.4	1	182	24.3	1
- Epilnfo & STATA	8	19.9	0	33	25.1	1	58	26.1	1	83	25.8	1	108	26.2	1	133	21.4	0	158	21.6	0	183	24.0	0
Logistic regression	9	27.3	1	34	24.2	0	59	21.3	0	84	20.4	0	109	20.5	0	134	21.4	0	159	22.2	0	184	25.5	1
- Introduction	10	22.3	0	35	27.0	1	60	23.5	1	85	19.0	0	110	23.5	0	135	24.6	1	160	21.0	0	185	25.4	1
- Coefficients	11	28.6	1	36	25.3	1	61	20.4	0	86	26.1	1	111	24.6	1	136	26.8	1	161	21.3	0	186	26.3	1
- Simple regress	12	22.0	0	37	22.0	0	62	23.2	0	87	22.0	0	112	23.1	1	137	18.6	0	162	24.9	1	187	20.6	0
Multiple regrees	13	23.0	0	38	27.3	1	63	21.1	0	88	26.3	1	113	19.7	0	138	24.5	0	163	24.4	1	188	23.9	0
- Multiple regress	14	21.2	0	39	26.4	1	64	21.8	0	89	23.2	1	114	20.0	0	139	24.1	1	164	24.8	0	189	25.3	1
 Model testing 	15	23.7	0	40	23.6	0	65	21.9	0	90	23.7	1	115	20.5	0	140	29.9	1	165	21.0	0	190	26.0	1
 Model building 	16	20.9	0	41	20.4	0	66	19.4	0	91	21.9	0	116	24.8	1	141	26.9	1	166	24.3	1	191	23.9	0
– Epilnfo & STATA	17	21.7	0	42	23.7	1	67	20.9	0	92	27.3	1	117	25.9	1	142	24.0	1	167	23.2	0	192	24.9	0
	18	21.6	0	43	24.6	1	68	21.9	0	93	24.9	1	118	24.1	0	143	20.5	0	168	21.5	0	193	26.2	1
	19	21.5	0	44	23.2	0	69	25.2	1	94	25.2	1	119	23.4	0	144	23.6	0	169	26.4	1	194	27.5	1
	20	19.9	0	45	26.1	1	70	20.4	0	95	27.0	1	120	22.1	0	145	24.3	1	170	25.1	1	195	21.9	0
	21	25.2	0	46	27.1	1	71	25.5	1	96	26.0	1	121	24.8	1	146	21.5	0	171	23.3	1	196	25.4	1
	22	22.2	0	47	22.1	0	72	26.5	1	97	25.1	1	122	23.1	1	147	25.6	1	172	23.5	1	197	24.2	0
	23	28.9	1	48	24.9	1	73	22.0	0	98	25.8	1	123	25.8	1	148	25.9	1	173	18.2	0	198	27.5	1
	24	20.0	0	49	26.5	1	74	24.0	1	99	17.9	0	124	26.4	1	149	28.3	1	174	22.4	1	199	25.0	1
	25	22.5	0	50	19.9	0	75	25.1	0	100	20.2	0	125	19.2	0	150	25.4	1	175	24.1	1	200	27.7	1

BMI

General conceptLinear equationLinear regression

Logistic regression

- Introduction

Example data and scatter plot

Can we model linear regression using least-square method?

Frequency table of BMI level by CVD

General conceptLinear equation

- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

		CV		
BMI	n	Absent	Present	Proportion
17 to 17+	1	1	0	0.0
18 to 18+	3	3	0	0.0
19 to 19+	12	12	0	0.0
20 to 20+	21	21	0	0.0
21 to 21+	25	25	0	0.0
22 to 22+	14	12	2	0.1
23 to 23+	29	17	12	0.4
24 to 24+	29	7	22	0.8
25 to 25+	28	2	26	0.9
26 to 26+	20	0	20	1.0
27 to 27+	12	0	12	1.0
28 to 28+	4	0	4	1.0
29 to 29+	2	0	2	1.0
TOTAL	200	100	100	0.5

Plot of percentage of subjects with CVD in each BMI level

Plot of percentage of subjects with CVD in each BMI level

Problem with linear regression

General concept
 Linear equation

- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

> Using dichotomous value of y (0 or 1)

Meaningless for predicted y

> Using probability of outcome as y (% of yes)

- Predicted y can be less than 0 or greater than 1, but probability must lie between 0 and 1
- Distribution of data seems to be s-shape (not straight line), resemble a plot of logistic distribution

- General conceptLinear equation
- •Linear regression
- Simple regress
- Multiple regress

> Let

- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Model a function of y

$$\hat{Y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_i X_i$$

- A denote the right side of equation
- p or P(y|x) denote probability of getting outcome
- q (or 1-p) denote probability of no outcome
- For left side of equation
 - p/q or p/(1-p) as y in the model

- General conceptLinear equation
- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

A

$$\frac{p}{1-p} = A$$

$$p = A * (1 - p) = A - Ap$$

p + Ap = A

$$p(1+A) = A$$
$$p = \frac{A}{1+A}$$

 $\overline{1+A}$ belongs to the interval (0, 1) if A line between 0 and ∞ → function of A → exponential of A → e^A

Logistic function

Model a function of y

General conceptLinear equation

- Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

- $\frac{p}{1-p} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_i X_i$
- The right-hand side of equation can take any value between -∞ and ∞
- > The left-hand side of equation can take only value between 0 and ∞ (not linear model)
- > Solution: take natural log (In) on both sides
 - Both sides can take any value between - ∞ and ∞ (as linear model)

Logit transformation

- General conceptLinear equation
- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Advantages of Logit

General concept
 Linear equation

- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

> Properties of a linear regression model
 > Logit between - ∞ and + ∞
 > Probability (P) constrained between 0 and 1

Directly related to odds of disease

e = The exponential function involves the constant with the value of 2.71828182845904 (roughly 2.72).

- General conceptLinear equation
- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Fitting the equation of data

Maximum likelihood

- Yield values for the unknown parameters which maximize the probability of obtaining the observed set of data
- Maximum Likelihood Estimates (MLE) for β_0 and β_i

Likelihood function

- Express the probability of the observed data as a function of the unknown parameters
- The resulting estmators are those which agree most closely with the observed data
- Practically easier to work with log-likelihood: $L(\beta)$ Let $\pi(x_i) = P(y | x)$

$$L(\beta) = \ln[l(\beta)] = \sum_{i=1}^{n} \{ y_i \ln[\pi(x_i)] + (1 - y_i) \ln[1 - \pi(x_i)] \}$$

Logistic regression

- General conceptLinear equation
- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Simple Logistic regression

- A single covariate

> Multiple logistic regression

Two or more covariate (with or without interactions)

Interpreting the estimated regression coefficients

•General concept •Linear equation

- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

The simplest case is when the logistic regression model involves only one covariate (x), and that x takes only two values, 0(unexposed) and 1 (exposed)

A logistic regression model for these data would correspond to

$$\ln \left[\frac{P(y|x_1)}{1 - P(y|x_1)} \right] = \beta_0 + \beta_1 x_1$$

General conceptLinear equation

- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

For the exposed individuals (X1 = 1)

$$\ln \left[\frac{P(y|x_1=1)}{1 - P(y|x_1=1)} \right] = \beta_0 + \beta_1$$

> For the unexposed individuals (X1 = 0)

$$\ln \left[\frac{P(y|x_1 = 0)}{1 - P(y|x_1 = 0)} \right] = \beta_0$$

Interpreting the estimated regression coefficients

 General concept •Linear equation

- •Linear regression

- Logistic regression
- Coefficients

E-

If we subtract the latter model equation (where X1 = 0 from the former (where X1 = 1)

$$\ln\left[\frac{P(y|x_{1}=1)}{1-P(y|x_{1}=1)}\right] - \ln\left[\frac{P(y|x_{1}=0)}{1-P(y|x_{1}=0)}\right] = (\beta_{0} + \beta_{1}) - \beta_{0}$$

$$\ln\left[\frac{P(y|x_{1}=1)}{1-P(y|x_{1}=1)} \div \frac{P(y|x_{1}=0)}{1-P(y|x_{1}=0)}\right] = \beta_{1}$$

$$\ln\left[\frac{a/(a+b)}{b/(a+b)} \div \frac{c/(c+d)}{d/(c+d)}\right] = \beta_{1}$$

$$\frac{ad}{bc} = e^{\beta_{1}}$$

$$OR = e^{\beta_{1}}$$

 β = increase in natural log of odds ratio for a \succ one unit increase in x

Interpreting the estimated regression coefficients

- General conceptLinear equation
- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

- β is amount of change in logit for each unit increase in X
- > β is not interpreted directly, instead, e^{β} is interpreted
- e^β is equal to odds ratio; change in odds between a baseline group and a single unit increase in X
 - if $e^{\beta} = 1$ then there is no change in odds ratio
 - if $e^{\beta} < 1$ then odds ratio decrease
 - if $e^{\beta} > 1$ then odds ratio increase
 - $-e^{\beta 0}$ is a baseline odds

86

Example data : CVD

	Variable	Description	Value
General concept Linear equation	id	Subject ID number	
Linear regression	gender	Gender	0=male,1=female
Multiple regressModel testing	age	Age in year	
- Epilnfo & STATA	weight	Weigh in kilogram	
- Introduction	height	Height in centimeter	
 Simple regress 	bmi	Body mass index (kg/m ²)	
 Multiple regress Model testing 	hypertension	Hypertension status	0=yes,1=no
- Model building	dm	Diabetes status	0=yes,1=no
- Epilnfo & STATA	alcohol	Alcohol drinker	0=yes,1=no
	smoke	Smoker	0=yes,1=no
	cvd	CVD status	0=yes,1=no

- General conceptLinear equation
- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Simple logistic regression

logit(y) = -38.15 + 1.61 * bmi

> Interpretation of β_1

log odds of CVD increase by 1.61 for a one unit increase in BMI

- OR =
$$e^{1.61} = 5.0$$

 The probability of getting CVD is 5.0 time as likely with an increase of BMI by one unit

General conceptLinear equation

- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Simple logistic regression

logit(y) = -0.75 + 1.19 * Smoke

> Interpretation of β_1

log odds of CVD increase by 1.19 for smoker

 $- OR = e^{1.19} = 3.3$

Those who are smoker are 3.3 time as likely to get
 CVD compare to those who are non-smoker

- •General concept •Linear equation
- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Multiple logistic regression

logit(y) = -38.6 + 0.66 * smoke + 0.42 * alcohol + 1.6 * bmi

> Interpretation of β_1

log odds of CVD increase by 0.66 for smoker

adjusted for alcohol and BMI

$$-$$
 OR = $e^{0.66}$ = 1.9

Those who are smoker are 1.9 time as likely to get
 CVD compare to those who are non-smoker adjusted
 for alcohol and BMI

Pseudo R²

- General concept
 Linear equation
- Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

- In linear regression we have the R² as a single agreed upon measure of goodness of fit of the model, the proportion of total variation in dependent variable accounted for by a set of covariates.
- No single agreed upon index of goodness of fit exists in logistic regression. Instead a number have been defined. These indices are sometimes referred to as Pseudo – R²s.
 - R_L^2 :
 - Cox and Snell Index
 - Nagelkerke Index
- None of these indices have an interpretation as "proportion of variance accounted for" as in linear regression.
- It is important to indicate which index is being used in report.

Pseudo R²

•General concept

- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

> R_L^2 : a commonly used index

- ranges between 0 and 1
- can be calculated from the deviance(–2LL) from the null model (no predictors) and the model containing k predictors.
- Interpreted as the proportion of the null deviance accounted for by the set of predictors

$$R_L^2 = \frac{D_{null} - D_k}{D_{null}}$$

Hypothesis testing of the model

- General conceptLinear equation
- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

> p-value or critical value approach

> Two parts of testing

- Significant of overall model (do all covariates together can predict the outcome?)
 - Testing for overall fit of the model
- Significant of each β_i (adjusted for other covariates)
 - Using Wald test

- General conceptLinear equation
- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Overall fit of the model

- Measures of model fit and tests of significance for logistic regression are not identical to those in linear regression.
- In logistic regression, measures of deviance replace the sum of squares of linear regression as the building blocks of measures of fit and statistical tests. These measures can be thought of as analogous to sums of squares, though they do not arise from the same calculations.
- Each deviance measure in logistic regression is a measure of lack of fit of the data to a logistic model.

General conceptLinear equation

- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Overall fit of the model

> Two measures of deviance are needed

- the null deviance, D_{null} , which is the analog of SS_Y (or SST) in

linear regession.

- D_{null} is a summary number of all the deviance that could potentially be accounted for. It can be thought of as a measure of lack of fit of data to a model containing an intercept but not predictors. It provides a baseline against which to compare prediction from other models that contain at least one predictor.
- the model deviance from a model containing k predictors, D_k ; it is

the analog of SSE in linear regression.

- It is a summary number of all the deviance that remains to be predicted after prediction from a set of k predictors, a measure of lack of fit of the model containing k predictors.
- ➢ If the model containing k predictors fits better than a model containing no predictors, then $D_k < D_{null}$. This is the same idea as in linear regression: if a set of predictors in linear regression provides prediction, then SSE < SST</p>

Overall fit of the model

General conceptLinear equation

- Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA

Logistic regression

- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

- The statistical tests built on deviances are referred to collectively as *likelihood ratio tests* because the deviance measures are derived from ratios of maximum likelihoods under different models.
- Standard notation for deviance : –2LL or –2 log likelihood
- Likelihood ratio test (LR)
 - $H_0: \beta_1 = \beta_1 = \ldots = \beta_i = 0$
 - A likelihood ratio χ^2 test = $D_{null} D_k$, which follows a χ^2 distribution with df = k
 - reject H₀ if observed is greater than 100(1- α) percentile of χ^2 distribution with k df

Testing of β

General concept
 Linear equation

- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

If an acceptable model is found, the statistical significance of each of the coefficients is evaluated using the Wald test

- Using chi-square test with 1 df

$$W_i = \frac{\beta_i^2}{S_{\beta_i}^2}$$

$$W_i = \frac{\beta_i}{S_{\beta_i}}$$

Wald test

- It provides a test for
 - H_0 : $\beta_{i. \text{ given other covariates in the model}} = 0$
- Test statistics: chi-square or z test
 The decision rule is: Reject H₀ if
 - Wald's $\chi^2 > \chi^2_{(1-\alpha,df=k)}$, or Wald's $|z| > Z_{(1-\alpha/2)}$
 - p-value < α

Interpretation: if reject H₀

There was a significant prediction of outcome by x_i adjusted for other covariates in the model

General conceptLinear equation

- Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Model building

General conceptLinear equation

- Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Depends on study objectives

- single hypothesis testing : estimate the effect of a given variable adjusted for all potential available confounders
- exploratory study : identify a set of variables independently associated to the outcome adjusted for all potential available confounders
- to predict : predict the outcome with the least variable possible (parsimony principle)

- General concept
 Linear equation
- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Model building strategy

- Variable selection
- Approach
 - Hierarchical or sequential regression: investigator's judgement (preferred)
 - Best subset: computer's judgement (not recommend)
- Exclusion of least significant variables base on statitical test and no important variation of coefficient until obtaining a satisfactory model
- > Add and test interaction terms
- Final model with interaction term if any
- Check model fit

Variable selection

General conceptLinear equation

- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

- what is the hypothesis, what is (are) the variable(s) of interest
 - Define variables to keep in the model (forced)
- what are the confounding variables
 - Literature review
 - Confounding effect in the dataset (bivariate analysis)
- biologic pathway and plausibility
- statistical (p-value)
 - Variable with p-value < 0.2
- Form of continuous variables
 - Original form as continuous
 - Categorized variable and coding

- General conceptLinear equation
- Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Hierarchical regression

- Assess whether a set of m predictors contribute significant prediction over and above a set of k predictors
 - likelihood ratio (LR) test
 - Deviance are computed for the k predictor model, Dk, and the (m
 - + k) predictor model, *Dm*+k
 - The difference between these deviances is an LR test for the significance of contribution of the set of m predictors over and above the set of k predictors, with df = m
 - The LR tests are used to compare models that are nested : all the predictors in the smaller (reduced) model are included among the predictors in the larger (full) model.
- Backward elimination or forward selection approach

Likelihood ratio statistic

General concept

- •Linear regression

- Logistic regression

- Model building

 $Log(odds) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$ (model 1) $Log(odds) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$ (model 2)

> LR statistic

-2LL model 2 minus -2LL model 1

LR statistic is a χ^2 with df = number of extra parameters in model

Example

- General conceptLinear equation
- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

- Full Model: smoke, alcohol, bmi
 - Deviance (-2LL): 100.03
- Reduced model: smoke, bmi
 - Deviance (-2LL): 100.39
- H₀: reduced model contribute significant prediction over full model
- > Test statistics
 - LR test = 100.39 100.03 = 0.36
 - df = 3-2 = 1
- > Critical value of $\chi^2_{(.95,df=1)} = 3.84$
- Reject the H₀
- Conclusion: alcohol does no contribute significant prediction in the model

Interaction term

General conceptLinear equation

- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

- If 2 covariates are x1 and x2
 Interaction is include in the model as x1*x2
 Assessing interaction use the same strategy of LR test
 - Full model : x1, x2, x1*x2
 - Reduced model : x1, x2
 - df = 3-2 = 1

Assumption

General conceptLinear equation

- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

> No multicollinearity among covariates

Linear relationships between continuous variables and a logit

No outliers among errors

Check model fit

General conceptLinear equation

- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Summary measure of Goodness-of-Fit

- Pearson Chi-square statistics and deviance approach
- Hosmer-Lemeshow test
- Area under ROC curve

Model diagnostics

- Check whether the model violate the assumptions

- General conceptLinear equation
- •Linear regression
- Simple regress
- Multiple regress

Analysis

Analysis Commands
Data

Merge Delete File/Table Delete Records Undelete Records

Variables Define Define Group Undefine Assign Recode Display
Select/If Select Cancel Select If Sort Cancel Sort

C Statistics List

C> Outout

Help

Frequencies Tables Match Means Summarize Graph Map Advanced Statistics Linear Regression Logistic Regression Kaplan-Meier Survival Cox Proportional Hazards Complex Sample Tables Complex Sample Tables

Read (Import) Relate Write (Export)

- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Example command in Epilnfo

Simple logistic regression

LOGISTIC cvd = bmi

Exit

Outcome Variable	Other Variables	Interaction Terms	
Cvd Match Variable	age alcohol		
Weight	bmi dm gender	E	
Confidence Limits	height hyperten	-	
Output to Table			
No Intercept			
	()=Make Dummy Varia	bles	
		<u>S</u> ave Only	<u>O</u> K
		1	Cont

- General conceptLinear equation
- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Example output in Epilnfo

Simple logistic regression

D:\?????\Course\Introduction to logistic (Monday)\OUT24.htm	
Image: PreviousImage: NextImage: LastImage: Comparison of the sector of	
LOGISTIC cvd = bmi	
<u>Next Procedure</u>	
Unconditional Logistic Regression	
Term Odds Ratio 95% C.I. Coefficient S.E. Z-Statistic P-Value	
bmi 4.9967 3.1278 7.9823 1.6088 0.2390 6.7312 0.0000 ←	Wald test
CONSTANT * * * -38.1488 5.6958 -6.6977 0.0000	
Convergence: Converged	
Iterations: 8	Deviance
Final -2*Log-Likelihood: 103.7093	
Cases included: 200	
Test Statistic D.F. P-Value	
Score 119.7305 1 0.0000	I R test
Likelihood Ratio 173.5496 1 0.0000	(to null)

- General conceptLinear equation
- Linear regression
- Simple regress
- Multiple regress

Analysis

Analysis Commands
Data

Merge Delete File/Table Delete Records Undelete Records

Variables Define Define Group Undefine Assign Recode Display
Select/If Select Cancel Select If Sort Cancel Sort

C Statistics List

C> Outout

Help

Frequencies Tables Match Means Summarize Graph Map Advanced Statistics Linear Regression Logistic Regression Kaplan-Meier Survival Cox Proportional Hazards Complex Sample Tables Complex Sample Tables

Read (Import) Relate Write (Export)

- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Example command in Epilnfo

Simple logistic regression

LOGISTIC cvd = smoke

Exit

outcome vanabie	Other Variables	Interaction Terms	
cvd	▼	•	
Match Variable	bmi	A	
	✓ dm gender		
<u>W</u> eight	height		
	 hyperten 	=	
Confidence Limits	smoke 4		
ļ	weight		
Output to Table			
J			
<u>No Intercept</u>			
	()=Make Dummy Variable	S	
		Save Only	<u>O</u> K

Example output in Epilnfo

Simple logistic regression

General concept

Linear equation	D:\?????\Course\Introduction to logistic (Monday)\OUT24.htm	
Linear regression Simple regress	Previous Next Last History Open Bookmark Print Maximize	
 Multiple regress 	LOGISTIC cvd = smoke	
 – Model testing – Epilnfo & STATA 	Next Procedure	
Logistic regression Introduction	Unconditional Logistic Regression	
CoefficientsSimple regress	Term Odds Ratio 95% C.I. Coefficient S. E. Z-Statistic P-Value	
Multiple regressModel testing	smoke 3.2959 1.8024 6.0271 1.1927 0.3080 3.8729 0.0001 CONSTANT * * 0.7520 0.2475 0.0002	— Wald test
 Model building 	CONSTANT * * -0.7538 0.2475 -3.0452 <u>0.0023</u>	
 EpiInfo & STATA 	Convergence: Converged Iterations: 4 Final -2*Log-Likelihood: 261.4390	Deviance
	Cases included: 200	(-266)
	Statistic D.F. P-Value E Score 15.5520 1 0.0001 E	LR test
	Likelihood Ratio 15.8199 1 0.0001	— (to null)

- General conceptLinear equation
- Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Example command in Epilnfo

Multiple logistic regression

_ _ X

Exit

Analysis

Analysis Commands
Data

Merge Delete File/Table Delete Records Undelete Records

Variables Define Define Group Undefine Assign Recode Display
Select/If Select Cancel Select If Sort Cancel Sort

C Statistics List

C> Outout

Help

Frequencies Tables Match Means Summarize Graph Map Advanced Statistics Linear Regression Logistic Regression Kaplan-Meier Survival Cox Proportional Hazards Complex Sample Tables Complex Sample Tables

Read (Import) Relate Write (Export)

LOGISTIC cvd = alcohol bmi smoke

Ou <u>t</u> come Variable	Other <u>V</u> ariables	Interaction Terms	i
Match Variable	Make Dummy	1	
 <u>W</u> eight	alcohol bmi		
Confidence Limits	smoke	₽.	
Output to Table			
□ <u>N</u> o Intercept			
	()=Make Dummy Variab	es	
		Save Only	<u>O</u> ł
	Clear	Help	Can

- General conceptLinear equation
- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Example output in Epilnfo

Multiple logistic regression

- General conceptLinear equation
- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Simple logistic regression: compute coefficients logit cvd bmi

Stata Results . logit cvd b	mi							23		
Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Iteration 5: Iteration 6:	log likeliho log likeliho log likeliho log likeliho log likeliho log likeliho log likeliho	$\begin{array}{rcl} \text{bod} &=& -138.62\\ \text{bod} &=& -69.416\\ \text{bod} &=& -56.009\\ \text{bod} &=& -52.374\\ \text{bod} &=& -51.869\\ \text{bod} &=& -51.854\\ \text{bod} &=& -51.854\\ \text{bod} &=& -51.854 \end{array}$	2944 5219 9483 1342 9532 1656 1639							
Logit estimate Log likelihood	s = -51.85463	9		Numbe LR ch Prob Pseud	r of obs i2(1) > chi2 o R2		200 173.55 0.0000 0.6259	-	[_R test to null)
cvd	Coef.	Std. Err.	z	P> z	[95% (onf.	Interval]			
bmi _cons	1.608781 -38.14877	.2390045 5.695823	6.73 -6.70	0.000 0.000	1.140 -49.31	341 238	2.077221 -26.98517			
			1							
	LL	V	Vald te	est						

- General conceptLinear equation
- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Simple logistic regression: compute OR

logit cvd bmi, or

Logistic cvd bmi

Stata Results . logit cvd I Iteration 0: Iteration 1: Iteration 2: Iteration 3:	bmi, log log log log	or likelih likelih likelih likelih	pod = -138.62 pod = -69.416 pod = -56.009 pod = -52.374	2944 5219 9483 1342					
Iteration 4: Iteration 5: Iteration 6: Logit estimate Log likelihood	log log log es d = -!	likeliho likeliho likeliho 51.85463	<pre>bod = -51.869 bod = -51.854 bod = -51.854 9</pre>	9532 1656 1639	Numbe LR ch Prob Pseud	r of obs i2(1) > chi2 o R2		200 173.55 0.0000 0.6259	LR test (to null)
cvd	odd	s Ratio	Std. Err.	z	P> z	[95% Co	onf.	Interval]	
bmi	4	.996715	1.194237	6.73	0.000	3.12783	34	7.982255	
				\uparrow					

- General conceptLinear equation
- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Simple logistic regression: compute coefficients logit cvd smoke

💷 Stata Results								X	3	
. logit cvd sr	noke								*	
Iteration 0: Iteration 1: Iteration 2: Iteration 3:	log log log log	likeliho likeliho likeliho likeliho	pod = -138.6 pod = -130.7 pod = -130. pod = -130.	2944 2955 7195 7195						
Logit estimato Log likelihooo	25 d = -1	130.7195	5		Numbe LR ch Prob Pseud	r of obs ii2(1) > chi2 lo R2		200 15.82 0.0001 0.0571	-	LR test (to null)
cvd		coef.	Std. Err.	z	P> z	[95% C	onf.	Interval]		
smoke _cons	1.1 7	L92685 537718	.307962 .2475369	3.87 -3.05	0.000 0.002	.58909 -1.2389	05 35	1.796279 2686084	=	
	LL	_	١	Nald te	est					

- General concept
 Linear equation
- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Simple logistic regression: compute OR

logit cvd smoke, or

logistic cvd smoke

Stata Results	23
. logit cvd smoke, or	
Iteration 0: log likelihood = -138.62944 Iteration 1: log likelihood = -130.72955 Iteration 2: log likelihood = -130.7195 Iteration 3: log likelihood = -130.7195	
Logit estimates Nu LR Pr Log likelihood = -130.7195 Ps	amber of obs = 200 LR test chi2(1) = 15.82 LR test cob > chi2 = 0.0001 (to null) ceudo R2 = 0.0571 (to null)
cvd Odds Ratio Std. Err. z P> z	[95% Conf. Interval]
smoke 3 295918 1.015017 3.87 0.00	00 1.802348 6.02718
LL Wald test	

- General conceptLinear equation
- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA
- Logistic regression
- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Multiple logistic regression: compute coefficients logit cvd smoke alcohol bmi

Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Iteration 5: Iteration 6: Logit estimate	log likeliho log likeliho log likeliho log likeliho log likeliho log likeliho log likeliho	d = -138.62 d = -68.074 d = -54.442 d = -50.6 d = -50.036 d = -50.016 d = -50.016	944 226 985 162 701 401 368	Numbe LR ch	r of obs ri2(3)		200 177.23	2	L	.R te
Log likelihood	= -50.016368	8		Pseud	lo R2	=	0.0000 0.6392		(1	.0 110
Log likelihood cvd	d = -50.016368	Std. Err.	z	Pseud Pseud	[95% C	= onf.	0.0000 0.6392 Interval]		(1	.o nu
Log likelihood cvd smoke	coef.	Std. Err.	z 0.90	P> z 0.371	[95% CC	enf.	0.0000 0.6392 Interval] 2.103504		(1	.o nu
Log likelihood cvd smoke alcohol	coef. . 5594565 . 4239548	Std. Err. .7367727 .7243875	z 0.90 0.59	P> z 0.371 0.558	[95% CC 784591 995818	= = onf. L5 36	0.0000 0.6392 Interval] 2.103504 1.843728		(1	.0 110
Log likelihood cvd smoke alcohol bmi	Coef . . 5594565 . 4239548 1 600128	Std. Err. .7367727 .7243875 .2470412	Z 0.90 0.59 6.48	P> z 0.371 0.558 0.000	784591 995810 1.1159	= = 0nf. 15 36 36	0.0000 0.6392 Interval] 2.103504 1.843728 2.08432	III	(1	.0 11

•General concept •Linear equation

- •Linear regression
- Simple regress
- Multiple regress
- Model testing
- Epilnfo & STATA

Logistic regression

- Introduction
- Coefficients
- Simple regress
- Multiple regress
- Model testing
- Model building
- Epilnfo & STATA

Example command & output in STATA

Multiple logistic regression: compute OR

logit cvd smoke alcohol bmi, or

logistic cvd smoke alcohol bmi

teration 0: teration 1: teration 2: teration 3: teration 4: teration 5: teration 6: ogit estimat	<pre>log likelih log likelih log likelih log likelih log likelih log likelih log likelih log likelih d = -50.01636</pre>	ood = -138.62 ood = -68.074 ood = -54.442 ood = -50.6 ood = -50.036 ood = -50.016 ood = -50.016	944 226 985 162 7701 4401 5368	Number LR ch Prob : Pseudo	of obs = i2(3) = ≻ chi2 = o R2 =	200 177.23 < 0.0000 0.6392		LR tes (to null
cvd	Odds Ratio	Std. Err.	z	P> z	[95% Conf	. Interval]		
		1,424728	0.90	0.371	.4563061	8.194838		
smoke alcohol bmi	1.933741 1.527992 4.953665	1.106859 1.223759	0.59 6.48	0.558	3.052424	6.320056 8.03912	-	

Wald test

