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Data

Quantitative Exposure variable (X)
* Quantitative Disease variable (Y)

* Objective: To quantify the linear relationship
between X and Y

Table 14.1 Synonyms for explanatory variable and
response variable.

Explanatory Variable — Response Variable
X - Y

independent variable — dependent variable
factor — outcome
treatment — response

exposure — disease




lllustrative data (Doll, 1955)

per capita cigarette lung cancer mortality per
100,000 in 1950 (Y)

tion (X)
consumption \ Y

COUNTRY c1G1930 LUNGCA
USA 1300 20
Great Britain 1100 46
Finland 1100 35
Switzerland 510 2S5
Canada 500 15
Holland 490 24
Australia 480 18
Denmark 380 17
Sweden 300 11
Norway 250 9
Iceland 230 6

n=11
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Assess:

Form

Direction of
association

Outliers

Strength of
relation




Lung Cancer Mortality per 100000, 1950
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Doll, 1955
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1200

1400

Form: linear

Direction: positive
association

Outlier: no clear outliers

Strength: difficult to
determine by eye




The eye is not a good judge of strength

Identical data sets on differently scaled axes

This relation appears to be weak This relation appears strong

The different appearances in strength is an
artifact of the axis scaling




Correlation coefficient, r

r = Pearson’s product-moment
correlation coefficient

Measures degree to which X and Y
“go together”

Always between -1 and 1
r = 0 = no correlation
r >0 = positive correlation

r < 0 = negative correlation
Karl Pearson

Closer risto 1 or -1, the stronger 1857 - 1936
the correlation




Interpretation of r

* Direction of association: positive, negative,
~0

* Strength of association
— closeto 1or-1= “strong”

— closeto 0 = “weak”

— guidelines
« if|r| 2.7 = say “strong”
e« if|r|] £.3= say “weak”




r by hand

1
r— n_IEZXZy

where zy =

* z quantify distance above or below mean in standard
deviations units.

* When z scores track in same directions = products
are positive

* When z scores track in opposite directions =
products are negative
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r by hand

Table 14.3 Calculation of correlation coefficient r, illustrative data.

X = —11 = 603.6364
_ 226
y = —1 = 20.54545
X; — X Yi—y
i Count X z = Y 2, = - IR
2 x s, Y s, X Y
1 Us 1300 1.840 20 —-0.047 - 0.086
2 Great Britain 1100 15312 46 2.171 2.847
3 Finland 1100 1.312 35 1.233 1.617
4 Switzerland 510 —0.247 25 0.380 —-0.094
5 Canada 500 —0.274 15 —0.473 0.130
6 Holland 490 —0.300 24 0.295 —0.088
7 Australia 480 -0.327 18 -0.217 0.071
8 Denmark 380 —0.591 1175 -0.302 0.179
9 Sweden 300 —0.802 ) i —-0.814 0.653
10 Norway 250 —0.934 9 —0.985 0.920
11 Iceland 230 — 0.987 6 -1.241 1.225
Sums — 6640 0 226 0 7.373

1
= = +7.373 = 0.7
—— 222 = 7 7:373 = 0737




’ Coefficient of determination (r2)

 Square the correlation coefficient =
r’ = proportion of variance in Y
mathematically explained by X

* |llustrative data: r*=0.7372=0.54 =
54% of variance in lung cancer
mortality is mathematically
explained per capita smoking rates
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Cautions

» Outliers
» Non-linear relationship

» Confounding (correlation is not causation)
» randomness
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Outliers

Outliers can have profound influence on r

I

These data have r=0.82
all because of this guy
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Non-linear relaitonship

& @ s

r=20.00

This strong
relationship Is
. missed by r s
because It is not
linear
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Confounding

William Farr showed
this strong negative
correlation between
cholera mortality and
elevation above sea
level in defense of
miasma theory

Cholera mortality (per 10,000)

10 20 40 60 80 100 200 400

Mean elevation of neigborhood (feet)

However, he failed to account for the fact that people
who lived at low elevations were more likely to drink
from contaminated water sources (.. confounding)
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Randomness

Selection of specific data points would result in a false
correlation

Need to do hypothesis testing!
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Example of questions

‘Generalconcept 3, Estimate association between outcome and
covariates

— How cardiovascular disease (CVD) associate with
smoking [and body mass index (BMI), age, etc.]

» Control of confounder(s)

— How cardiovascular disease (CVD) associate with
smoking after adjust for BMI, age, etc.

» Risk prediction
— How to predict probability of getting CVD given

Information of BMI, age, etc.
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)) Result from bivariate analysis

Eome GOz Outcome is CVD, exposure Is smoker
CVD No CVD Odds ratio
n=100 n=100 (95% CI)
Smoker 76 49 3.30 (1.80, 6.03)
Alcohol drinker 62 48 1.77 (1.01, 3.10)

Confounder ?




Perfect positive correlation r= 1.0
Strong positive correlation r= 0.9 Moderate positive correlation r= 0.5

Perfect negative correlation r= ~1.0 Strong negative correlation r= —0.9 Moderate negative correlation r= —0.5
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Sequence of analysis

-General concept > DeSCrlptlve anaIyS|S
— Know your dataset

» Bivariate analysis
— ldentify associations

» Stratifled analysis
— ldentify confounders and effect modifiers

» Multivariable analysis
— Control for confounders and manage effect modifiers
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Regression

SRR > Regression is the study of dependence between

an outcome variable (y) - the dependent
variable, and one or several covariates (X) -

Independent variables

» Objective of using regression
— Estimate association between outcome and
covariates
— Control of confounder(s)

— RIisk prediction
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)) Result from bivariate analysis

Eome GOz Outcome is CVD, exposure Is smoker
CVD No CVD p - value
n=100 n=100
Mean MBI (sd) 25.6(1.5) 21.6(1.6) < 0.001
Mean age (sd) 63.0(7.2) 56.1(7.1) < 0.001

Confounder ?
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Stratify analysis

Variable2 Vz;iable...
-General concept Variablel 5 crldz] ORus
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2 G, o
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Regression

-General concept

» Itis a representation/modeling of the
dependence between one or several variables

» Type of models
— Linear regression
— Logistic regression
— Cox regression
— Poisson regression
— Loglinear regression

» Choices of the model depend on objectives,
study design and outcome variables
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Review of linear equation
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X and y relationship examplel

-Linear equation

T AU P
T U P
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\‘ X and y relationship example2

-Linear equation

W N = O Lo w | X
< NS S N N <
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\‘ x and y relationship example3

10 -

-Linear equation

QL= L S

y=2x+1
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’ General form of linear equation

y =a+ bX

-Linear equation

» X IS Independent variable
» Y IS dependent variable
» als a constant or y-intercept

— The value of y when x =0
» b Is a slope
— Amount by which y changes when x changes by one

unit
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)‘ Exercise: interpretation of slope

e > Y = X
— Xincrease 12y .............
> Yy = 2X
— Xincrease 12y .............
> y=2x+1
— Xincrease 12y .............
> y=-Xx+1
— Xincrease 12y .............
> y=-2x-1

— Xincrease 12y .............
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Inear regression

L

)

[

00000000l

aooo
100000000000t
100000000000
: 000000000000l
;l[E:]JDDDDDDDDDDDH

gooonnanl

a000000000000cC
)00000000000000¢

O0000000000000I
100000000000000

0000000000
000000000
100000

-_‘.""";fﬂ.'_“r“,’
UL

oo0o000000000
BDDDDDDDDDD
0

o

oo
0o
00

oooorc

L !




Linear regression
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» Given an independent variable (x) and a dependent
-Linear equation continuous variable (y), we computed r as a measure of
-Linear regression . . .

linear relationship

» We want to be able to use our knowledge of this
relationship to explain our data, or to predict new data.

— This suggests linear regression (LR), a method for representing
the dependent variable (outcome) as a linear function of the

iIndependent variables (covariates)
— QOutcome is continuous variable

— Covariate can be either continuous or categorical variable
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Linear regression

eennen > SIMple linear regression (SLR)

-Linear regression

— A single covariate

» Multiple linear regression (MLR)

— Two or more covariate (with or without interactions)




) Mathematical properties of a straight line

» A straight line can be described by an equation
of the form

-Linear regression

Y = Bo t BiX

— By and B, are coefficients of the model

— By lis called the y-intercept of the line: the value of y

when x=0

— B, 1s called the slope: the amount of change in y for

each 1-unit change in X
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}' Example data with 15 epidemiologists

ID X (Year of working) vy (Number of investigation)
-Linear regression 1 3 1 5
2 6 2
3 3 1
4 8 16
5 9 10
6 6 5
7/ 16 37
8 10 40
9 2 8
10 5 21
11 5 29
12 6 20
13 7/ 9
14 11 26
15 18 42
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Approach of SLR

» The following graph is a scatter plot of the
example data with 15 epidemiologists

» We want to find a line that adequately represents

the relationship between X (year of working) and
Y (Number of outbreak investigation)

45 -
40 - .
35 -
30 - R

Y 25 .
20 - *e
15 - o ¢
10 - « *
5 - .
0 2

— Simple regress

2
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Algebraic approach

» The best fitting line is the one with the minimum sum of
sguared errors

— Simple regress

» The way to find the best-fitting line to minimize the sum
of squared errors is called least-squares method

— Let YAI denote the estimated outcome at X, based on the fitted
regression line, YAI = [, + X

- [, and 3, are the intercept and the slope of the fitted line

— The error, or residual, is € =Y, —\?i =Y, —(,30 +,5’1Xi)

— The sum of the squares of all such errors is

SSE=§:Q2 =i(Y, —YAi)z :i(Y _:éo_:élxi)z
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Algebraic approach

» The least-squares estimates

— Simple regress n

L 2R o
1 Zn:(xi _X)Z SSX

N —

,Bo :Y_,él>z
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Approach of SLR

ID x vy (Xi=X) (¥ =Y) (X =X)(¥-Y) (X, = X)*
1 3 15 -4.67 -3.73 17.42 21.78
2 6 2 -1.67 -16.73 27.89 2.78
_ Simpleregress 3 3 1 -4.67 -17.73 82.76 21.78
4 8 16 0.33 -2.73 -0.91 0.11
5 9 10 1.33 -8.73 -11.64 1.78
6 6 5 -1.67 -13.73 22.89 2.78
/7 16 37 8.33 18.27 152.22 69.44
8 10 40 2.33 21.27 49.62 5.44
9 2 8 -5.67 -10.73 60.82 32.11
10 5 21 -2.67 2.27 -6.04 /.11
11 5 29 -2.67 10.27 -27.38 /.11
12 6 20 -1.67 1.27 -2.11 2.78
13 7 9 -0.67 -9.73 6.49 0.44
14 11 26 3.33 /.27 24.22 11.11
15 18 42 10.33 23.27 240.42 106.78
Total 115 281 636.67 293.33

X =115/15=7.67

Y =281/15=1873
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Algebraic approach

P, =63667

— Simple regress SSX — 29333

b= P 036675 47
SS, 29333

N

B, =Y — X =18.73—(2.17)(7.67) = 2.09

l

Y =217+2.09X




41

Approach of SLR

» Regression line and equation, graph showing

error of data point between observed (10, 40) to
expected (10, 23.80)

50 -
a5 y =2.1705x + 2.0932

®

— Simple regress

40 - A
35 -
y30— .
25 -
20 -
15 -
10 -

error

Y =1873
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Interpretation of coefficients

Y =217+2.09X

— Simple regress

> By : for epidemiologist with no working
experience (X=0), average number of outbreak
Investigation is 2.17

— Less meaningful for continuous variable of X, unless

center it at some meaningful value

> B, : for additional one year of working
experience, average number of outbreak
Investigation increase by 2.09
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’ SLR for dichotomous variable

ID X1 (training) v (Number of investigation)

1 1 15
2 0 2
— Simple regress 3 O 1
4 0 16
5 1 10
6 0 5
/ 1 37
8 1 40
9 1 8
10 1 21
11 1 29
12 0 20
13 0 9
14 0 26
15 1 42

x1: 0 =no training, 1 = ever attend training
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SLR for dichotomous variable

40 -
35 -
30 -

* o

— Simple regress

20 + ¢

10

¢ |

()
.Y
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SLR for dichotomous variable

40 -

* oo

— Simple regress

35 -
30 -
y 25 1 y = 13.964x + 11.286

20 +
15 ¢
10 - R
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Interpretation of coefficients

Y =1129+1396X

— Simple regress

> By : for epidemiologist with no training(X1=0),
average number of outbreak investigation is
11.29

> B, : for epidemiologist who ever attend training,
average number of outbreak investigation
Increase by 13.96 (or average number of
outbreak investigation is 25.25)




| )) Multiple linear regression (MLR)

ID X (Year of working) X1 (training) y (Number of investigation)

1 3 1 15
2 6 0 2
3 3 0 1
— Multiple regress 4 8 0 16
5 9 1 10
6 6 0 5
7 16 1 37
8 10 1 40
9 2 1 8
10 5 1 21
11 5 1 29
12 6 0 20
13 7 0 9
14 11 0 26
15 18 1 42

x1: 0 =no training, 1 = ever attend training




-

. }\) Multiple linear regression (MLR)

» Also used least-squares method to estimate
coefficients and draw best fitting line

— Multiple regress

> General form
YA — ;Bo +181X1+,82X2 +...+,Bi Xi
— Bylis the value of y when all x, = 0

— Biis amount of change in y for each 1-unit change in

X; adjusted for other covariates




— Multiple regress

Interpretation of coefficients
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Y =-1.68+1.93X +10.51X1

B, : for epidemiologist with no working experience (X=0)
and no training(X1=0), average number of outbreak
Investigation is -1.68

— Less meaningful if there are continuous variables of X in the

model, unless center it at some meaningful value

, . for additional one year of working experience,
average number of outbreak investigation increase by
1.93 after adjusted for ever attend training

, . for epidemiologist who ever attend training,
average number of outbreak investigation increase by
10.51 after adjusted for working experience
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-

- )) Coefficient of Determination (r2 or R?)

» A measure of the impact that X covariate(s) has in
explaining the variation of Y

— Multiple regress > O S r2 S 1

— 1 : a perfect prediction

— 0 : absolutely no association

» The higher the r? value, the more the variation in Y is
able to be predicted by X. The higher the r?, the smaller
the errors of prediction

» Adjusted r? : a modification of r? that adjusts for the
number of covariates in a model




Interpretation of r2

Y =-1.68+1.93X +10.51X1 r*=0.69

— Multiple regress

» 69% of the variability of number of outbreak
Investigation is explained by number of year in
working experience and ever attend training

51




| )) Hypothesis testing of the model

» p-value or critical value approach

- veliesting -, Two parts of testing

— Significant of overall model (do all covariates together

can predict the outcome?)
« Using ANOVA approach (overall F-test)

— Significant of each f; (adjusted for other covariates)

« Using either partial F-test or partial t-test
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ANOVA table

Source Sum of square df  Mean square F statistics
(SS) (MS)
Regression SSR K MSR MSR/MSE
 Model testing Residual (Error) SSE n-k-1 MSE
Total SST n-1
SR=> (Y, -Y)?
712
SR=Y" (¥ -¥)

SST =) (Y, -Y)=SR+SE = S5,

K : number of covariate in the model

n : number of observation in the model
MSR = SSR/k

MSE = SSE/(n-k-1)

r°=SSR/SST

YV V VY V
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Regression line and error

50 -

45 -

40 - A

_ Model testing 35 -
y 30

25

20

15

10

y = 2.1705x + 2.0932

0 5 10 15 20

Note: sum of square (SS) is computed from all y,, this figure just
shows only 1 data point of y at (10, 40) as an example




— Model testing

Overall F test
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» The ANOVA provides a test for

Ho:By=Py=...=B=0

> Test statistics
MSR
MSE

Fk,n—k—l —

» The decision rule Is:
Reject Hy if F>F_, « k-1 Or p-value < a

> Interpretation: if reject H,
There was a significant prediction of outcome by
covariates taken together (at least one covariate is

significant)
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partial t test

» It provides a test for

HO : Bi. given other covariates in the model =0

> Test statistics

— Model testing

1:n—k—l _

S
SEﬂi
» The decision rule Is:
Reject Hy If t>t_.» n-k-1q)Or p-value <a
> Interpretation: if reject H,
There was a significant prediction of outcome by X

adjusted for other covariates in the model
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partial F test

» Extra sum of squares
— We refer to SSR,,,,; as the EXTRA SUM OF SQUARES due

X2|X

to including X2 in the model after X1 is already there

— Model testing

— This calculation is done by subtraction, by comparing the SSR
from two models, one referred to as the “FULL MODEL” and
the other as the “REDUCED MODEL”

SSRX*|X1...xp - SSQxl...xp,x B S‘SRxl...xp

- - J

Y Yo Y

Extra SS Full model SS Reduced model SS

» We use this extra SSR to calculate a partial F statistic
for contribution of that variable in the order we
designated




— Model testing

>

>

>

>

partial F test

It provides a test for

HO : Bi. given other covariates in the model =0

ul Ss:\>Reduced
F _ k1 — kz

kK, ,n—k -1 SR,
n-k -1

Test statistics SR

The decision rule iIs:

Reject Hyif F > Fq . 4 orp-value <a

Interpretation: if reject H,
There was a significant prediction of outcome by x; adjusted for

other covariates in the model
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— Epilnfo & STATA

Example command in Epiinfo

> SLR

REGRESS y = x

(B8, Analysi

Exit

[ Analysis Commands

= Data
Read (Import)
Relate
Write ([Export)
Merge
Delete File/Table
Delete Records
Undelete Records

[ Variables
Define
Define Group
Undefine
Assign
Recode
Display

= Select/If
Select
Cancel Select
If
Sort
Cancel Sort

[ Statistics
List
Frequencies
Tables
Match
Means
Summarize
Graph
Map

[ Advanced Statistics
N
Logistic Regression
Kaplan-Meier Survival
Cox Proportional Hazards
Complex Sample Frequencies
Complex Sample Tables

Complex Sample Means
= Musbreab

Help

59

RRChESS T N Y e —
Outcome Variable Other Variables Interaction Terms
y =l =
ID
X1
Weight
l =}
Confidence Limits
Output to Table
[~ NoIntercept
( )=Make Dummy Variables
Save Only OK
Clear Help Cancel
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Example output in Epilnfo

> SLR

"DA?772777\Course\Introduction to logistic Monday\OUT22 htm: .
% = o
) ¥ : 4 3 & | ¥ & | O
Previous Next Last History Open Bookmark Print Maximize
REGRESS vy = x .
— Epilnfo & STATA
Next Procedure
|| Linear Regression
hl Variable Coefficient Std Error F-test P-Value Partial
alrtia
J b 2.170 0.561 149567 0.002238 € m E test
CONSTANT 2.093 4967 0.1776 0.680909
Correlation Coefficient: r"2= 0.53 |
Source df Sum of Squares Mean Square F-statistic |
Regraaioa il 1381856 1381856  14.957 € Overall
RexainalziRi3 1201.077 92391 F test
Total 14 2582.933
B e sy’




— Epilnfo & STATA

Example command in Epiinfo

> MLR

REGRESS y = x x1

B Analysis

Exit

[ Analysis Commands
= Data

Read (Import)
Relate
‘Write (Export)
Merge
Delete File/Table
Delete Records
Undelete Records

[ Variables
Define
Define Group
Undefine
Assign
Recode
Display
= Select/If
Select
Cancel Select
If
Sort
Cancel Sort
[ Statistics
List
Frequencies
Tables
Match
Means
Summarize
Graph
Map
[ Advanced Statistics
N
Logistic Regression
Kaplan-Meier Survival
Cox Proportional Hazards
Complex Sample Frequencies
Complex Sample Tables

Complex Sample Means
= Musbreab

Help
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REGRESS I 2 N 2 S
Outcome Variable Other Variables Interaction Terms
y = | =l
‘ID ‘
Weight X )
Confidence Limits
Output to Table
[” No Intercept
( )=Make Dummy Variables

Save Only OK

Help Cancel




— Model testing

ey e o+
) ¥ : 4 ¥ = | % & | O
Previous Next Last History Open Bookmark Print Maximize

REGRESS y=xx1

Next Procedure

Linear Regression

Variable Coefficient Std Error F-test P-Value

X 1.931
x1 10.515
CONSTANT -1.683

AN

0.488 15.6499 0.002249

4328 5.9035 0.033427
4509 0.1393 0.716089

AN

Correlation Coefficient: r*2= 0.69

Source df Sum of Squares Mean Square F-statistic
Regression 2 1777.898 888.949 13.251
Residuals 12 805.036 67.086

Total 14 2582933

A

Partial
F test

Overall
F test




Example command & output in STATA

> SLR
regy x

¥ 'l Stata Results

— Epilnfo & STATA

1381.85606
1201.07727

2582.93333

Coef.

2.170455
2.093182

. 5612199

1381.85606
92.3905594

184.495238

Std. Err. P>t

0.002

4.96714 0.680

Partial
t test

[95% Conf.

. 9580126
-8.637672

1
14.96
0.0019
0.5350
0.4992
9.612

Interval]

3.382897
12.82404

Overall
F test
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Example command & output in STATA

S - > h/lL.FQ
regy x x1

B ' Stata Results 3

regy x x1
— Epilnfo & STATA

source ‘

1777.8978 2 888.9489
805.035533 12 67.0862944

2582.93333 14 184.495238

coef. std. Err.

1.931472 .4882394 . . 8676898 2.995254
10. 51523 4.3277 ; 1.085807 19.94465
-1.682741 4.508904 ; ¥, -11. 5068 8.141316

Partial Overall
t test F test
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iC regression
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Introduction

» Dichotomous outcome Is very common
situation in biology and epidemiology

— Sick, not sick
— Dead, alive
-Logistic regression —_ Cure, no Cure

— Introduction

» What are problems if we use linear
regression with dichotomous outcome?

— For example
« Outcome is cardiovascular disease (CVD):
0 = Absent, 1= Present
« EXxposure is body mass index (BMI)
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Introduction

» A broad class of regression models, collectively known
as the generalized linear model, has been developed to
address multiple regression with a variety of dependent
variable like dichotomies and counts

-Logistic regression

- Introduction » Logistic regression is one generalized linear model for
categorical outcome variables

» Logistic regression allows one to predict a dichotomous
(or categorical) outcome from a set of variables that may

be continuous, discrete (or categorical), dichotomous, or
a mix.
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BMI and CVD status of 200 subject

id bmi cvd|id bmi cvd|id bmi cvd| id bmi cvd| id bmi cvd| id bmi cvd| id bmi cvd| id bmi cvd
1 206 o |26 231 0 51 233 0 76 215 0 101 221 1 126 196 0 151 238 0 176 254 1
2 L 12214 1 27 276 1 52 210 0 77 25.2 1 102 244 1 127 228 0 152 236 0 177 261 1
3 204 o |28 213 0 53 220 0 78 23.0 1 103 2238 0 128 192 0 153 240 1 178 254 1
4 206 0o |20 252 1 54 269 1 79 245 1 104 203 0 129 291 1 154 233 1 179 214 0
5 207 0 | 30 284 1 55 20.1 0 80 203 0 105 253 1 130 235 1 155 265 1 180 2738 1
6 215 o |31 192 0 56 212 0 81 255 1 106 267 1 131 229 0 156 242 1 181 264 1
T - 235 o |32 225 0 57 254 1 82 24.0 0 107 276 1 132 194 0 157 234 1 182 243 1
8 199 0 33 251 1 58 26.1 1 83 258 1 108 262 1 133 214 0 158 216 0 183 240 0

-Logistic regression 9 273 1 |34 242 0 |59 213 0 8 204 0 | 109 205 0 | 134 214 0 | 159 22 0 | 18 255 1
— Introduction 10 223 0 35 270 1 60 235 1 85 19.0 0 110 23.5 0 135 24.6 1 160 21.0 0 185 25.4 1

11 286 1 36 253 1 61 204 0 86 26.1 1 11 246 1 136 268 1 161 213 0 186 263 1
12 220 0 37 220 0 62 232 0 87 22.0 0 12 231 1 137 186 0 162 249 1 187 206 0
13 230 0 38 273 1 63 211 0 88 263 1 13 197 0 138 245 0 163 244 1 188 239 0
14 212 0 39 264 1 64 218 0 89 232 1 114 200 0 139 241 1 164 248 0 189 253 1
15 237 o |40 236 0 65 219 0 90 23.7 1 15 205 0 140 299 1 165 210 0 190 260 1
16 209 0 | 41 204 0 66 194 0 91 21.9 0 116 248 1 141 269 1 166 243 1 191 239 0
17 217 o | 2 237 1 67 209 0 92 273 1 17 259 1 142 240 1 167 232 0 192 249 0
18 216 o | 43 246 1 68 219 0 93 249 1 18 241 0 143 205 0 168 215 0 193 262 1
19 215 0o | 4 232 0 69 252 1 9% 252 1 119 234 0 144 236 0 169 264 1 194 275 1
20 199 0o |4 261 1 70 204 0 95 27.0 1 120 221 0 145 243 1 170 25.1 1 195 219 0
21 252 0o |46 271 1 71 255 1 9% 26.0 1 121 248 1 146 215 0 171 233 1 196 254 1
2 222 o |47 221 0 72 265 1 97 25.1 1 122 231 1 147 256 1 172 235 1 197 242 0
23 289 1 48 249 1 73 220 0 98 258 1 123 258 1 148 259 1 173 182 0 198 275 1
24 200 o |49 265 1 74 240 1 99 17.9 0 124 264 1 149 283 1 174 224 1 199 250 1
25 225 0 50 199 0 75 251 0 100 202 0 125 192 0 150 254 1 175 241 1 200 277 1
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Example data and scatter plot

-Logistic regression

— Introduction

CVD

16 18 20 22 24 26 28 30 32

BMI
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Example data and scatter plot

Can we model linear regression using least-square method ?

1

-Logistic regression

— Introduction

CVD y = 0.155x - 3.1626

16 18 20 22 24 26 28 30 32

BMI




CvD
BMI n Absent  Present Proportion
17 to 17+ 1 1 0 0.0
18 to 18+ 3 3 0 0.0
19 to 19+ 12 12 0 0.0
Logisticregression 20 10 20+ 21 21 0 0.0
- Introduction 21 to 21+ 25 25 0 0.0
22 to 22+ 14 12 2 0.1
23 to 23+ 29 17 12 0.4
24 to 24+ 29 7 22 0.8
25 to 25+ 28 2 26 0.9
26 to 26+ 20 0 20 1.0
27 to 27+ 12 0 12 1.0
28 to 28+ 4 0 4 1.0
29 to 29+ 2 0 2 1.0
TOTAL 200 100

100 0.5 __




-Logistic regression

— Introduction

72

Plot of percentage of subjects with CVD in each BMI level

% of

CVvD
present

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

J

|

|

|

|

16

*—¢ 9o I I T T T |

18 20 22 24 26 28 30 32

BMI level




73
Plot of percentage of subjects with CVD in each BMI level

1.0
0.9
0.8

-Logistic regression % of 0.7

— Introduction CVD O 6
resent
P 0.5

0.4
0.3
0.2
0.1

0.0 -
16 18 20 22 24 26 28 30 32

J
2
2
2
2

|

|

y = 0.1125x - 2.1069

|

|

BMI level
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}) Problem with linear regression

» Using dichotomous value of y (0 or 1)

— Meaningless for predicted y

Toseresesen > Using probability of outcome as y (% of yes)

— Introduction

— Predicted y can be less than O or greater than 1, but

probability must lie between 0 and 1

— Distribution of data seems to be s-shape (not straight

line), resemble a plot of logistic distribution
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Model a function of y

Y = B, + B X + B Xy + .t B X,
> Let
— A denote the right side of equation
RIS — p or P(y|x) denote probability of getting outcome

— Introduction

— q (or 1-p) denote probability of no outcome

» For left side of equation
— p/q or p/(1-p) as y in the model




-Logistic regression

— Introduction

76

Model a function of y

A

1+ A belongs to the interval (0, 1) if A line between 0 and o

- function of A 2 exponential of A > eA
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Logistic function

Probability of
disease

1.0

0.8 1

-Logistic regression

— Introduction

0.6 -

0.4

0.2 -

0.0
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Model a function of y

ﬁ:ﬂ0+ﬂlxl+ﬂzx2 +"'+/Bixi

» The right-hand side of equation can take any
value between -0 and «

-Logistic regression

— Introduction

» The left-hand side of equation can take only
value between 0 and « (not linear model)

» Solution: take natural log (In) on both sides
— Both sides can take any value between - and « (as

linear model)




79

Logit transformation

-Logistic regression
— Introduction

- P(y¥)

In
1-P(y|x)

Y
logit of AP(y/x)




Advantages of Logit

» Properties of a linear regression model
» Logit between - o and + «
» Probabillity (P) constrained between 0 and 1

-Logistic regression

— Introduction

» Directly related to odds of disease

L ot 5i%
{2 ) o (2o

e = The exponential function involves the constant with the value of
2.71828182845904 (roughly 2.72).

80
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Fitting the equation of data

> Maximum likelihood

— Yield values for the unknown parameters which
maximize the probability of obtaining the observed
set of data

— Maximum Likelihood Estimates (MLE) for 3, and 3
-Logistic regression > leellhOOd funCt|On

— Introduction
— EXpress the probability of the observed data as a
function of the unknown parameters

— The resulting estmators are those which agree most
closely with the observed data

— Practically easier to work with log-likelihood: L (/)
Let 7(x) = P(y[X)

L(5) =l (B)]= 2y, Infr(x)]+ - y) nfL- 7(x)]
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Logistic regression

» Simple Logistic regression

— A single covariate

roostersgesson 5 Multiple logistic regression

— Introduction

— Two or more covariate (with or without interactions)
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\) Interpreting the estimated regression coefficients

/

> | \“

» The simplest case Is when the logistic
regression model involves only one covariate
(x), and that x takes only two values,
O(unexposed) and 1 (exposed)

-Logistic regression

~e= > Alogistic regression model for these data
would correspond to

P(y|x)
1-P(y|x,)

In

— /Bo "'181)(1
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"\
:

\, Interpreting the estimated regression coefficients

» For the exposed individuals (X1 = 1)
- P(yx=1)
1-P(yx=1)

In

:,Bo+ﬂ1

-Logistic regression

— Coefficients

» For the unexposed individuals (X1 = 0)
P(y‘ = 0)

In
| 1-P(y|x=0)

:,80
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, al '\) Interpreting the estimated regression coefficients

2 e PR

/
> If we subtract the latter model equation (where
X1 = 0) from the former (where X1 =1)

In{ P(y‘X1=1) }—M{ P(y‘X1:O) }:(,604',81)_:30

1- P(y|x,=1) 1- P(y|x,=0)
-Logistic regression | |: P(y‘ X1: 1) . P(y‘ X]_: O) :| B
n - =
— Coefficients 1_ P(y‘ X1: 1) 1_ P(y‘ X]_: O)
al/(a+b) c/(c+d)
| + =
D+ D- n{b/(a+b) d/(c+d)} A
E+|a|Db ad _ s
E-| c | d bc

OR=¢"
» [B= Increase in natural log of odds ratio for a
one unit increase Iin X
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.‘\) Interpreting the estimated regression coefficients

\

» [} Is amount of change in logit for each unit
Increase in X

> B is not interpreted directly, instead, eP is
Interpreted

Logsicregresson > €P |S equal to odds ratio; change in odds
between a baseline group and a single unit
Increase in X

— Coefficients

— if eP=1 then there is no change in odds ratio
— if eB< 1 then odds ratio decrease
— if eb> 1 then odds ratio increase

— ePYjs a baseline odds




-Logistic regression

— Simple regress
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Example data : CVD

Variable Description Value
Id Subject ID number
gender Gender O=male,1=female
age Age In year
weight Weligh in kilogram
height Height in centimeter
bmi Body mass index (kg/m?)

hypertension
dm

alcohol
smoke

cvd

Hypertension status
Diabetes status
Alcohol drinker
Smoker

CVD status

O=yes,1=no
O=yes,1=no
O=yes,1=no
O=yes,1=no
O=yes,1=no
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Simple logistic regression

logit(y) = —38.15+1.61* bmi

> Interpretation of (3,
— log odds of CVD increase by 1.61 for a one unit

-Logistic regression increase in BMI

— OR=el6l=50

— Simple regress

— The probabillity of getting CVD is 5.0 time as likely

with an increase of BMI by one unit
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Simple logistic regression

logit(y) =—-0.75+1.19* Smoke

> Interpretation of (3,
— log odds of CVD increase by 1.19 for smoker

-Logistic regression

— OR=el19=33

_ Simple regress — Those who are smoker are 3.3 time as likely to get

CVD compare to those who are non-smoker
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Multiple logistic regression

logit(y) = —-38.6+ 0.66* smoke+ 0.42* alcohol +1.6* bmi

> Interpretation of (3,
— log odds of CVD increase by 0.66 for smoker

-Logistic regression adjusted for aICOhOI and BMI

— OR=e%%=1.9

— Multiple regress

— Those who are smoker are 1.9 time as likely to get
CVD compare to those who are non-smoker adjusted

for alcohol and BMI




-Logistic regression

— Multiple regress
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Pseudo R2

In linear regression we have the R? as a single agreed
upon measure of goodness of fit of the model, the
proportion of total variation in dependent variable
accounted for by a set of covariates.

No single agreed upon index of goodness of fit exists in
logistic regression. Instead a number have been defined.
These indices are sometimes referred to as Pseudo — R?s.

i RL2 :
— Cox and Snell Index

— Nagelkerke Index

None of these indices have an interpretation as “proportion
of variance accounted for” as in linear regression.

It is important to indicate which index is being used in
report.
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Pseudo R2

2 .
> R a commonly used index

— ranges between 0 and 1

— can be calculated from the deviance(-2LL) from the

-Logistic regression null model (no predictors) and the model containing k
predictors.
= DRI — Interpreted as the proportion of the null deviance

accounted for by the set of predictors

D, —D,

null

D

R —

null




-

. )) Hypothesis testing of the model )

» p-value or critical value approach

» Two parts of testing

-Logistic regression

— Significant of overall model (do all covariates together

can predict the outcome?)

» Testing for overall fit of the model

— Model testing

— Significant of each f; (adjusted for other covariates)
e Using Wald test




-Logistic regression

— Model testing

>

>
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Overall fit of the model

Measures of model fit and tests of significance for
logistic regression are not identical to those in linear
regression.

In logistic regression, measures of deviance replace the
sum of squares of linear regression as the building
blocks of measures of fit and statistical tests. These
measures can be thought of as analogous to sums of
sguares, though they do not arise from the same
calculations.

Each deviance measure in logistic regression is a
measure of lack of fit of the data to a logistic model.
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Overall fit of the model

> Two measures of deviance are needed
— the null deviance, D, which is the analog of SS, (or SST) in

linear regession.

* D, is a summary number of all the deviance that could potentially be
accounted for. It can be thought of as a measure of lack of fit of data to a
model containing an intercept but not predictors. It provides a baseline against
-Logistic regression which to compare prediction from other models that contain at least one
predictor.

— the model deviance from a model containing k predictors, D,; it is

the analog of SSE in linear regression.

* Itis a summary number of all the deviance that remains to be predicted after
prediction from a set of k predictors, a measure of lack of fit of the model
containing k predictors.

» If the model containing k predictors fits better than a model
containing no predictors, then D, < D, . This is the same

iIdea as in linear regression: if a set of predictors in linear
regression provides prediction, then SSE < SST

— Model testing
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Overall fit of the model

> The statistical tests built on deviances are referred to
collectively as likelihood ratio tests because the deviance
measures are derived from ratios of maximum
likelihoods under different models.

pi - > Standard notation for deviance : —2LL or -2 log
-Logistic regression I|kel|h00d

» Likelihood ratio test (LR)
- Ho:B=B,=...=B;=0
2 2
— A likelihood ratio £ test =D,,— D,, which follows a X
distribution with df = k

— Model testing

2
— reject H, if observed is greater than 100(1- o) percentile of X

distribution with k df
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Testing of 3

» If an acceptable model is found, the statistical
significance of each of the coefficients is
evaluated using the Wald test

— Using chi-square test with 1 df

-Logistic regression 18.2
W '

i T o
S,Bi

— Model testing s USIng Y4 teSt

w =B
Sﬂi




-Logistic regression

— Model testing
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Wald test

» It provides a test for
=0

I_IO . Bi. given other covariates in the model

» Test statistics: chi-square or z test
> The decision rule is: Reject H, If

— Wald’S Zz > Z(zl—a,df =K) or Wa|d’S |Z| > Z(l—OL/Z)
— p-value < a
> Interpretation: if reject H,

There was a significant prediction of outcome by X

adjusted for other covariates in the model
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Model building

» Depends on study objectives

— single hypothesis testing : estimate the effect of a
given variable adjusted for all potential available
confounders

— exploratory study : identify a set of variables
Independently associated to the outcome adjusted for
all potential available confounders

— to predict : predict the outcome with the least varieble
~ Model building possible (parsimony principle)

-Logistic regression




-Logistic regression

— Model building

100

Model building strategy

Variable selection
Approach

— Hierarchical or sequential regression: investigator’s

judgement (preferred)

— Best subset: computer’s judgement (not recommend)

Exclusion of least significant variables base on
statitical test and no important variation of
coefficient until obtaining a satisfactory model

Add and test interaction terms
Final model with interaction term if any
Check model fit
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Variable selection

» what is the hypothesis, what is (are) the variable(s) of
Interest

— Define variables to keep in the model (forced)

» what are the confounding variables

-Logistic regression — Literature review

— Confounding effect in the dataset (bivariate analysis)
biologic pathway and plausibilty
» statistical (p-value)

— Model building
— Variable with p-value < 0.2

> Form of continuous variables

— Oiriginal form as continuous

— Categorized variable and coding
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Hierarchical regression

» Assess whether a set of m predictors contribute
significant prediction over and above a set of k predictors

— likelihood ratio (LR) test

— Deviance are computed for the k predictor model, Dk, and the (m

+ K) predictor model, Dm+k

-Logistic regression

— The difference between these deviances is an LR test for the
significance of contribution of the set of m predictors over and

above the set of k predictors, with df = m

— Model buildin
. ° — The LR tests are used to compare models that are nested : all

the predictors in the smaller (reduced) model are included
among the predictors in the larger (full) model.
» Backward elimination or forward selection approach
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Likelihood ratio statistic

» Compares two nested models
Log(odds) = By + ByX; + BoXp + PaXg + PuX,  (Model 1)
Log(odds) = By + B1X; + BoX, (model 2)

-Logistic regression

> LR statistic
-2LL model 2 minus -2LL model 1

— Model building

LR statistic is a y2 with df = number of extra parameters

IN model




-Logistic regression

— Model building

>

Example

Full Model: smoke, alcohol, bmi
— Deviance (-2LL): 100.03
Reduced model: smoke, bmi

— Deviance (-2LL): 100.39

H,: reduced model contribute significant prediction over
full model

Test statistics
— LR test =100.39 — 100.03 = 0.36
— df=3-2=1
Critical value of £ (2.95,df -1) = 3.84
Reject the H,

» Conclusion: alcohol does no contribute significant

prediction in the model

104
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Interaction term

> If 2 covariates are x1 and x2
> Interaction is include Iin the model as x1*x2

» Assessing interaction use the same strategy of
LR test

— Full model : x1, x2, x1*x2

-Logistic regression

— Reduced model : x1, x2

— Model building —df=3-2=1
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Assumption

» No multicollinearity among covariates

» Linear relationships between continuous
variables and a logit

-Logistic regression

» NO outliers among errors

— Model building
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Check model fit

» Summary measure of Goodness-of-Fit

— Pearson Chi-square statistics and deviance approach

— Hosmer-Lemeshow test

-Logistic regression

— Area under ROC curve

» Model diagnostics
— Model building

— Check whether the model violate the assumptions




-Logistic regression

— Epilnfo & STATA

Example command in Epiinfo

» Simple logistic regression

LOGISTIC cvd = bmi

e =)

B Analysis

Exit

Analysis Commands
= Data
Read (Import)
Relate
Write ([Export)
Merge
Delete File/T able
Delete Records
Undelete Records
[ Variables
Define
Define Group
Undefine
Assign
Recode
Display
= Select/If
Select
Cancel Select
It
Sort
Cancel Sort
[ Statistics
List
Frequencies
Tables
Match
Means
Summarize
Graph
Map
= Advanced Statistics
Linear Regression
Kaplan-Meier Survival
Cox Proportional Hazards
Complex Sample Frequencies
Complex Sample Tables

Complex Sample Means
= Nebnad

Help

T

2. e

108

LOGISTIC — (-S|
Outcome Variable Other Variables Interaction Terms
[eva e E
Match Variable age -
ﬂ alcohol (T

Weight dm =
I L] gender
Confidence Limits height o

hyperten
l _'J id v
Output to Table
[~ No Intercept

( )=Make Dummy Variables

Save Only OK
Clear Help Cancel
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Example output in Epilnfo

» Simple logistic regression

'DA\?7777227\Course\Introduction to logistic (Monday\OUT24htm.
== "'H o’
) ¥ ‘ 3 | @ = | & | O
Previous Next Last History Open Bookmark Print Maximize
LOGISTIC cvd = bmi 7
Next Procedure
-Logistic regression
|| Unconditional Logistic Regression
I
’ Term Odds Ratio 95% C.I. Coefficient S.E. Z-Statistic P-Value
| bmi 49967 3.1278 7.9823 16088 02390 67312 0.0000 € Wald test
r CONSTANT - & *  .38.1488 56958 -6.6977 0.0000
— Epilnfo & STATA Convergence: Converged
Iterations: 8 .
Devian
Final -2*Log-Likelihood: 103.7093 «— € ZELCG
Cases included: 200 (_ )
Test Statistic D.F. P-Value =
Score 119.7305 1 0.0000 LR test
Likelihood Ratio 173.5496 1 0.0000 ¢ L (tO nuII)
- ———
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Example command in Epiinfo

» Simple logistic regression
LOGISTIC cvd = smoke

T Analysis T el S |
Exit

-Logistic regression

— Epilnfo & STATA

Analysis Commands
= Data
Read (Import)
Relate
Write ([Export)
Merge
Delete File/T able
Delete Records
Undelete Records
[ Variables
Define
Define Group
Undefine
Assign
Recode
Display
= Select/If
Select
Cancel Select
It
Sort
Cancel Sort
[ Statistics
List
Frequencies
Tables
Match
Means
Summarize
Graph
Map
= Advanced Statistics
Linear Regression

Logistic Regression

T

2. e

LOGISTIC

Outcome Variable

Other Variables

Interaction Terms

| cvd
Match Variable

=]

Weight

|

Confidence Limits

Output to Table

[ NoIntercept

bmi
dm
gender
height
hyperten
id

Sk

weight

[ 4]

( )=Make Dummy Variables

Clear

Save Only

oK

Help

Cancel

Kaplan-Meier Survival

Cox Proportional Hazards
Complex Sample Frequencies
Complex Sample Tables

Complex Sample Means
= Nebnad

Help
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Example output in Epilnfo

» Simple logistic regression

D:\?7?27227\Course\Introduction to logistic (Monday)\OUT24 htm
o ~ s
+ | ¥ | 2 e & | B & O
Previous Next Last History Open Bookmark Print Maximize
LOGISTIC cvd = smoke ]
o ) Next Procedure
-Logistic regression II
Unconditional Logistic Regression
I
| Term Odds Ratio 95%  C.I  Coefficient S.E. Z-Statistic P-Value
'| smoke 3.2959 1.8024 6.0271 1.1927 0.3080 3.8729 0.000]1 < Wald test
| CONSTANT = b : -0.7538 0.2475 -3.0452 0.0023
— Epilnfo & STATA Convergence: Converged
Iterations: 4 .
Deviance
Final -2*Log-Likelihood: 2614390 ¢ ( 2|_|_)
Cases included: 200
Test Statistic D.F. P-Value .
Score 15.5520 1 0.0001 LR test
Likelihood Ratio 15.8199 1 0.0001 € (to null)
E——— e S
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Example command in Epiinfo

» Multiple logistic regression
LOGISTIC cvd = alcohol bmi smoke

(8 Analysis T e ] |
_ Ea | LOGISTIC | (28

[~ Analysis Commands

[ Data

Read (Import] I Outcome Variable Other Variables Interaction Terms
Rel
Wetital:e[Expoﬂ] I cvd Ll I | LI
.. . u .
-Logistic regression D:E:a File/Table ol Make Dummy |
Delete Records |— LI

Undelete Records

= Variables Weight althol
Define I LI bmi
Define Group smoke h

Kcietms Confidence Limits
ssign

Recod v
fom | =
@ Select/If Output to Table

Select

Cancel Select

If

Sort [~ No Intercept
- Sta:i:tri'::l Sont ( )=Make Dummy Variables

List r
— i Frequencies
Epilnfo & STATA e , Save Only OK

Match
Means
Summarize C!ear ﬂelp gancel
Graph
Map

= Advanced Statistics
Linear Regression
Kaplan-Meier Survival
Cox Proportional Hazards

2. e

Complex Sample Frequencies
Complex Sample Tables

Complex Sample Means
= Nebnad

‘ Help
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Example output in Epilnfo

» Multiple logistic regression

'D:\7772277\Course\Introduction to logistic (Monday\OUT24.htm'
T b >
t 4| 2|2 3|5 &[0
Previous Next Last History Open Bookmark Print Maximize
LOGISTIC cvd = alcohol bmi smoke
Next Procedure
-Logistic regression 'I Unconditional Logistic Regression

|

I Term Odds Ratio 95%  C.I. Coefficient S.E. Z-Statistic P-Value

’I alcohol 1.5280 0.3694 6.3201 0.4240 0.7244 0.5853 0.5584 €

| bmi 4.9537 3.0524 8.0391 16001 02470  6.4772 0.0000 € Wald test
smoke 1.9337 0.4563 8.1948 0.6595 0.7368 0.8951 0.3708 €
CONSTANT * & * 386038 59242  -6.5163 0.0000

— Epilnfo & STATA Convergence: Converged .

Iterations: 8 ) Deviance
Final -2*Log-Likelihood: 100.0327 (-2LL)
Cases included: 200
Test Statistic D.F. P-Value
Score 122.1242 3 0.0000 [ LR test
Likelihood Ratio 177.2261 3 0.0000 : (to nu”)
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) Example command & output in STATA

» Simple logistic regression: compute coefficients

logit cvd bmi

| Stata Results X4

. logit cvd bmi

-138.62944
-69.416219

o _ I on 2: likeld -56.009483
-Logistic regression I rion 3: celd _ _52.374342
I ion 4: 114 -~ -51.869532

~ -51.854656

. 854639

LR test
(to null)

[95% Conf. Interval]

om1 1.608781 . 2390045 6. 0.000 1.140341 2.077221
— Epilnfo & STATA cons -38.14877 5.695823 -6.7 0.000 -49.31238 -26.98517

LL Wald test
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Example command & output in STATA

» Simple logistic regression: compute OR
logit cvd bmi, or
Logistic cvd bmi
-Logistic regression . logit cvd bmi, or -

log likelihood -138.62944
log Tikeli -69.416219
14 . 009483
.374342

. 869532

. 854656

. 854639

200 LR test

173.55

0:85% (te nul)

— Epilnfo & STATA

cvd ‘ 0odds Ratio std. Err. . > | 2 . Interval]

bmi ‘ 4.996715 1.194237 7 7.982255 |8

LL Wald test
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) Example command & output in STATA
» Simple logistic regression: compute coefficients
logit cvd smoke
. logit cvd smoke
| | LR test
(to null)

[95% conf. Interval]

1.192685 . 307962 3.87 0.000 . 5890905 1.796279
-.7537718 .2475369 -3.05 0.002 -1.238935 -.2686084 j

— Epilnfo & STATA

LL Wald test




-Logistic regression

— Epilnfo & STATA

) Example command & output in STATA

117

» Simple logistic regression: compute OR

logit cvd smoke, or

logistic cvd smoke

" '| Stata Results

. logit cvd smoke,

-138.62944
-130.72955
-130.7195
-130.7195

O(
(
8 1|
8 ]|

1
I¢
I
] ¢

odds Ratio std. Err.

295918 1.015017 3.87

LL Wald test

LR test
(to null)
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Example command & output in STATA

» Multiple logistic regression: compute coefficients

logit cvd smoke alcohol bmi

¥ '| Stata Results 3

. logit cvd smoke alcohol bmi

log likelihood = -138. 62944
I 1: log :a: ih -68.074226
-Logistic regression Iters: 2: ikelih -54.442985
Iterat 3: 0 elih -50. 6162
-50.036701
- -50.016401
-50.016368
200 LR test
177.23
R hi2 0. 0000 (to null)
Log likelihood = -50.016368 : , 0.6392
std. Err. z > |z 95% conf. Interval]
_ smoke . 5594565 .7367727 i : -.7845915 2.103504
— Epilnfo & STATA alc .4239548  .7243875 A : -.9958186 1.843728
mi 1.600128 .2470412 ; : 1.115936 2.08432

-33.6037 5.924196 : : -50. 21497 -26.99255

LL Wald test
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Example command & output in STATA

» Multiple logistic regression: compute OR

logit cvd smoke alcohol bmi, or

logistic cvd smoke alcohol bmi

.. . '/ Stata Results 52
-Logistic regression

. logit cvd smoke alcohol bmi, or

11 -138.62944

13 -68.074226

11 -54.442985
log 1i C -50. 6162
log 1i C -50.036701

1 ~

11

1 0O: | 0g
1 A log

log

log ( -50.016401
log d = -50.016368

it LR test
. (to null)

_ Epilnfo & STATA ole ikelihood -50.016368

0odds Ratio std. Err. > |z [95% conf. Interval]

1.933741 1.424728 : s 37 .4563061 8.194838
1./527992 1.106859 ; . . 3694209 6.320056
4.953665 1.223759 : . 3.052424 8.03912

LL Wald test



