Data analysis

- Categorical data

- Continuous data

Hypothesis Tests for Categorical data

Chi-square (X²) test

- We use to measure the differences between what is observed and what is expected according to an assumed hypothesis.
- Type:
 - Person's chi-square test
 - Yate's corrected chi-square test
 - Mantel-Haenzel chi-square test
 - Fisher exact test

X² distribution

Assumption for chi-square test

- Random sample
- Independence: observations are always assumed to be independent of each other
- Sample size per cell
 - larger (rxc) tables: **expected value** is >=5 in 80% of cells
 - 2x2 tables: no cells **expected value=0** and >=5 in all cells
- Sample size (as a whole) is large enough, otherwise will lead to an unacceptable type II error

Expected value

	D+	D-	Total
E+	а	b	a+b
Expected	(a+b)(a+c)/N	(a+b)(b+d)/N	
E-	С	d	c+d
Expected	(c+d)(a+c)/N	(c+d)(b+d)/N	
Total	a+c	b+d	Ν

TABLE C: X2 CRITICAL VALUES

					Tail prol	bability p	148				
df	.25	.20	.15	:10	.05	.025	.02	.01	.005	.0025	.001
1	1.32	1.64	2.07	2.71	3.84	5.02	5.41	6.63	7.88	. 9.14	10.83
2	2.77	3.22	3.79	4.61	5.99	7.38	7.82	9.21	10.60	11.98	13.82
3	4.11	4.64	5.32	6.25	7.81	9.35	9.84	11.34	12.84	14.32	16.27
4	5.39	5.99	6.74	7.78	9.49	11.14	11.67	13.28	14.86	16.42	18.47
5	6.63	7.29	8.12	9.24	11.07	12.83	13.39	15.09	16.75	18.39	20.51
6	7.84	8.56	9.45	10.64	12.59	14.45	15.03	16.81	18.55	20.25	22.46
7	9.04	9.80	10.75	12.02	14.07	16.01	16.62	18.48	20.28	22.04	24.32
8	10.22	11.03	12.03	13.36	15.51	17.53	18.17	20.09	21.95	23.77	26.12
9	11.39	12.24	13.29	14.68	16.92	19.02	19.68	21.67	23.59	25.46	27.88
10	12.55	13.44	14.53	15.99	18.31	20.48	21.16	23.21	25.19	27.11	29.59
11	13.70	14.63	15.77	17.28	19.68	21.92	22.62	24.72	26.76	28.73	31.26
12	14.85	15.81	16.99	18.55	21.03	23.34	24.05	26.22	28.30	30.32	32.91
13	15.98	16.98	18.20	19.81	22.36	24.74	25.47	27.69	29.82	31.88	34.53
14	17.12	18.15	19.41	21.06	23.68	26.12	26.87	29.14	31.32	33.43	36.12
15	18.25	19.31	20.60	22.31	25.00	27.49	28.26	30.58	32.80	34.95	37.70
16	19.37	20.47	21.79	23.54	26.30	28.85	29.63	32.00	34.27	36.46	39.25
17	20.49	21.61	22.98	24.77	27.59	30.19	31.00	33.41	35.72	37.95	40.79
18	21.60	22.76	24.16	25.99	28.87	31.53	32.35	34.81	37.16	39.42	42.31
19	22.72	23.90	25.33	27.20	30.14	32.85	33.69	36.19	38.58	40.88	43.82
20	23.83	25.04	26.50	28.41	31.41	34.17	35.02	37.57	40.00	42.34	45.31
21	24.93	26.17	27.66	29.62	32.67	35.48	36.34	38.93	41.40	43.78	46.80
22	26.04	27.30	28.82	30.81	33.92	36.78	37.66	40.29	42.80	45.20	48.27
23	27.14	28.43	29.98	32.01	35.17	38.08	38.97	41.64	44.18	46.62	49.73
24	28.24	29.55	31.13	33.20	36.42	39.36	40.27	42.98	45.56	48.03	51.18
25	29.34	30.68	32.28	34.38	37.65	40.65	41.57	44.31	46.93	49.44	52.62
26	30.43	31.79	33.43	35.56	38.89	41.92	42.86	45.64	48.29	50.83	54.05
27	31.53	32.91	34.57	36.74	40.11	43.19	44.14	46.96	49.64	52.22	55.48
28	32.62	34.03	35.71	37.92	41.34	44.46	45.42	48.28	50.99	53.59	56.89
29	33.71	35.14	36.85	39.09	42.56	45.72	46.69	49.59	52.34	54.97	58.30
30	34.80	36.25	37.99	40.26	43.77	46.98	47.96	50.89	53.67	56.33	59.70
40	45.62	47.27	49.24	51.81	55.76	59.34	60.44	63.69	66.77	69.70	73.40
50	56.33	58.16	60.35	63.17	67.50	71.42	72.61	76.15	79.49	82.66	86.66
60	66.98	68.97	71.34	74.40	79.08	83.30	84.58	88.38	91.95	95.34	99.61
80 1	88.13	90.41	93.11	96.58	101.9	106.6	108.1	112.3	116.3	120.1	124.8

$$\chi^2 = \sum \frac{\left(O - E\right)^2}{E}$$

O = the frequencies observedE = the frequencies expected $\sum = the 'sum of'$

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	4.577ª	2	.101
Likelihood Ratio	4.679	2	.096
Linear-by-Linear Association	3.110	1	.078
N of Valid Cases	200		

 a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 21.39.

If not table 2x2

Use table r x c
Same concept
df = (r-1)(c-1)

Data analysis

- Categorical data

- Continuous data

Hypothesis Tests for Continuous data

When df are infinite (i.e., the sample size is very large), the *t* distribution will equal the *z* distribution. As the formula of *t*- test is similar *z*-test.

Type of t-test

- One sample t-test
 - E.g. Is mean height of student in school A equal to 160 cm.?
- Paired t-test
 - E.g. Are mean scores of student in school A between pre-test and post-test?
- Independent (unpaired) t-test
 - E.g. Are mean scores of student in school A equal to in school B?

$$T = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{s_{p}^{2}}{n_{1}} + \frac{s_{p}^{2}}{n_{2}}}}$$

• df = n1 + n1

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

Thank You